全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

A High Through-Put Screen for Small Molecules Modulating MCM2 Phosphorylation Identifies Ryuvidine as an Inducer of the DNA Damage Response

DOI: 10.1371/journal.pone.0098891

Full-Text   Cite this paper   Add to My Lib

Abstract:

DNA replication is an essential process for cell division and as such it is a process that is directly targeted by several anticancer drugs. CDC7 plays an essential role in the activation of replication origins and has recently been proposed as a novel target for drug discovery. The MCM DNA helicase complex (MCM2-7) is a key target of the CDC7 kinase, and MCM phosphorylation status at specific sites is a reliable biomarker of CDC7 cellular activity. In this work we describe a cell-based assay that utilizes the “In Cell Western Technique” (ICW) to identify compounds that affect cellular CDC7 activity. By screening a library of approved drugs and kinase inhibitors we found several compounds that can affect CDC7-dependent phosphorylation of MCM2 in HeLa cells. Among these, Mitoxantrone, a topoisomerase inhibitor, and Ryuvidine, previously described as a CDK4 inhibitor, cause a reduction in phosphorylated MCM2 levels and a sudden blockade of DNA synthesis that is accompanied by an ATM-dependent checkpoint response. This study sheds light on the previously observed cytotoxity of Ryuvidine, strongly suggesting that it is related to its effect of causing DNA damage.

References

[1]  Bell SP, Dutta A (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71: 333–374 doi:10.1146/annurev.biochem.71.110601.135425.
[2]  Sclafani RA, Holzen TM (2007) Cell cycle regulation of DNA replication. Annu Rev Genet 41: 237–280 doi:10.1146/annurev.genet.41.110306.130308.
[3]  Day TA, Palle K, Barkley LR, Kakusho N, Zou Y, et al. (2010) Phosphorylated Rad18 directs DNA polymerase η to sites of stalled replication. J Cell Biol 191: 953–966 doi:10.1083/jcb.201006043.
[4]  Kim JM, Kakusho N, Yamada M, Kanoh Y, Takemoto N, et al. (2008) Cdc7 kinase mediates Claspin phosphorylation in DNA replication checkpoint. Oncogene 27: 3475–3482 doi:10.1038/sj.onc.1210994.
[5]  Rainey MD, Harhen B, Wang G-N, Murphy PV, Santocanale C (2013) Cdc7-dependent and -independent phosphorylation of Claspin in the induction of the DNA replication checkpoint. Cell Cycle 12. doi: 10.4161/cc.24675
[6]  Sheu Y-J, Stillman B (2010) The Dbf4-Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4. Nature 463: 113–117 doi:10.1038/nature08647.
[7]  Chuang L-C, Teixeira LK, Wohlschlegel JA, Henze M, Yates JR, et al. (2009) Phosphorylation of Mcm2 by Cdc7 promotes pre-replication complex assembly during cell-cycle re-entry. Mol Cell 35: 206–216 doi:10.1016/j.molcel.2009.06.014.
[8]  Cho W-H, Lee Y-J, Kong S-I, Hurwitz J, Lee J-K (2006) CDC7 kinase phosphorylates serine residues adjacent to acidic amino acids in the minichromosome maintenance 2 protein. Proc Natl Acad Sci USA 103: 11521–11526 doi:10.1073/pnas.0604990103.
[9]  Montagnoli A, Valsasina B, Brotherton D, Troiani S, Rainoldi S, et al. (2006) Identification of Mcm2 phosphorylation sites by S-phase-regulating kinases. J Biol Chem 281: 10281–10290 doi:10.1074/jbc.M512921200.
[10]  Montagnoli A, Valsasina B, Croci V, Menichincheri M, Rainoldi S, et al. (2008) A Cdc7 kinase inhibitor restricts initiation of DNA replication and has antitumor activity. Nat Chem Biol 4: 357–365 doi:10.1038/nchembio.90.
[11]  Koltun ES, Tsuhako AL, Brown DS, Aay N, Arcalas A, et al. (2012) Discovery of XL413, a potent and selective CDC7 inhibitor. Bioorg Med Chem Lett. doi:10.1016/j.bmcl.2012.04.024.
[12]  Jiang W, McDonald D, Hope TJ, Hunter T (1999) Mammalian Cdc7-Dbf4 protein kinase complex is essential for initiation of DNA replication. EMBO J 18: 5703–5713 doi:10.1093/emboj/18.20.5703.
[13]  Montagnoli A, Bosotti R, Villa F, Rialland M, Brotherton D, et al. (2002) Drf1, a novel regulatory subunit for human Cdc7 kinase. EMBO J 21: 3171–3181 doi:10.1093/emboj/cdf290.
[14]  Yoshizawa-Sugata N, Ishii A, Taniyama C, Matsui E, Arai K-I, et al. (2005) A second human Dbf4/ASK-related protein, Drf1/ASKL1, is required for efficient progression of S and M phases. J Biol Chem 280: 13062–13070 doi:10.1074/jbc.M411653200.
[15]  Wu X, Lee H (2002) Human Dbf4/ASK promoter is activated through the Sp1 and MluI cell-cycle box (MCB) transcription elements. Oncogene 21: 7786–7796 doi:10.1038/sj.onc.1205914.
[16]  Yamada M, Watanabe K, Mistrik M, Vesela E, Protivankova I, et al. (2013) ATR-Chk1-APC/CCdh1-dependent stabilization of Cdc7-ASK (Dbf4) kinase is required for DNA lesion bypass under replication stress. Genes Dev 27: 2459–2472 doi:10.1101/gad.224568.113.
[17]  Barkley LR, Santocanale C (2013) MicroRNA-29a regulates the benzo[a]pyrene dihydrodiol epoxide-induced DNA damage response through Cdc7 kinase in lung cancer cells. Oncogenesis 2: e57 doi:10.1038/oncsis.2013.20.
[18]  Hiraga S-I, Alvino GM, Chang F, Lian H-Y, Sridhar A, et al. (2014) Rif1 controls DNA replication by directing Protein Phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex. Genes Dev 28: 372–383 doi:10.1101/gad.231258.113.
[19]  Poh WT, Chadha GS, Gillespie PJ, Kaldis P, Blow JJ (2014) Xenopus Cdc7 executes its essential function early in S phase and is counteracted by checkpoint-regulated protein phosphatase 1. Open Biol 4: 130138 doi:10.1098/rsob.130138.
[20]  Ito S, Taniyami C, Arai N, Masai H (2008) Cdc7 as a potential new target for cancer therapy. Drug News Perspect 21: 481–488 doi:10.1358/dnp.2008.21.9.1290818.
[21]  Swords R, Mahalingam D, O'Dwyer M, Santocanale C, Kelly K, et al. (2010) Cdc7 kinase - a new target for drug development. Eur J Cancer 46: 33–40 doi:10.1016/j.ejca.2009.09.020.
[22]  Montagnoli A, Moll J, Colotta F (2010) Targeting cell division cycle 7 kinase: a new approach for cancer therapy. Clin Cancer Res 16: 4503–4508 doi:10.1158/1078-0432.CCR-10-0185.
[23]  Menichincheri M, Albanese C, Alli C, Ballinari D, Bargiotti A, et al. (2010) Cdc7 kinase inhibitors: 5-heteroaryl-3-carboxamido-2-aryl pyrroles as potential antitumor agents. 1. Lead finding. J Med Chem 53: 7296–7315 doi:10.1021/jm100504d.
[24]  Bryan MC, Falsey JR, Frohn M, Reichelt A, Yao G, et al. (2013) N-substituted azaindoles as potent inhibitors of Cdc7 kinase. Bioorg Med Chem Lett 23: 2056–2060 doi:10.1016/j.bmcl.2013.02.007.
[25]  Zhao C, Tovar C, Yin X, Xu Q, Todorov IT, et al. (2009) Synthesis and evaluation of pyrido-thieno-pyrimidines as potent and selective Cdc7 kinase inhibitors. Bioorg Med Chem Lett 19: 319–323 doi:10.1016/j.bmcl.2008.11.093.
[26]  Harrington PE, Bourbeau MP, Fotsch C, Frohn M, Pickrell AJ, et al. (2013) The optimization of aminooxadiazoles as orally active inhibitors of Cdc7. Bioorg Med Chem Lett. doi:10.1016/j.bmcl.2013.09.055.
[27]  Collins FS (2011) Mining for therapeutic gold. Nat Rev Drug Discov 10: 397 doi:10.1038/nrd3461.
[28]  Paul SM, Lewis-Hall F (2013) Drugs in search of diseases. Sci Transl Med 5: 186fs18 doi:10.1126/scitranslmed.3004452.
[29]  Chong CR, Sullivan DJ (2007) New uses for old drugs. Nature 448: 645–646 doi:10.1038/448645a.
[30]  Dodson H, Wheatley SP, Morrison CG (2007) Involvement of centrosome amplification in radiation-induced mitotic catastrophe. Cell Cycle 6: 364–370. doi: 10.4161/cc.6.3.3834
[31]  Rainey MD, Charlton ME, Stanton RV, Kastan MB (2008) Transient inhibition of ATM kinase is sufficient to enhance cellular sensitivity to ionizing radiation. Cancer Res 68: 7466–7474 doi:10.1158/0008-5472.CAN-08-0763.
[32]  Natoni A, Murillo LS, Kliszczak AE, Catherwood MA, Montagnoli A, et al. (2011) Mechanisms of action of a dual Cdc7/Cdk9 kinase inhibitor against quiescent and proliferating CLL cells. Mol Cancer Ther 10: 1624–1634 doi:10.1158/1535-7163.MCT-10-1119.
[33]  Zhang J, Chung T, Oldenburg K (1999) A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J Biomol Screen 4: 67–73. doi: 10.1177/108705719900400206
[34]  Vanotti E, Amici R, Bargiotti A, Berthelsen J, Bosotti R, et al. (2008) Cdc7 kinase inhibitors: pyrrolopyridinones as potential antitumor agents. 1. Synthesis and structure-activity relationships. J Med Chem 51: 487–501 doi:10.1021/jm700956r.
[35]  Menichincheri M, Bargiotti A, Berthelsen J, Bertrand JA, Bossi R, et al. (2009) First Cdc7 kinase inhibitors: pyrrolopyridinones as potent and orally active antitumor agents. 2. Lead discovery. J Med Chem 52: 293–307 doi:10.1021/jm800977q.
[36]  Hoffman GR, Moerke NJ, Hsia M, Shamu CE, Blenis J (2010) A high-throughput, cell-based screening method for siRNA and small molecule inhibitors of mTORC1 signaling using the In Cell Western technique. Assay Drug Dev Technol 8: 186–199 doi:10.1089/adt.2009.0213.
[37]  Chong CR, Chen X, Shi L, Liu JO, Sullivan DJ (2006) A clinical drug library screen identifies astemizole as an antimalarial agent. Nat Chem Biol 2: 415–416 doi:10.1038/nchembio806.
[38]  Ryu CK, Kang HY, Lee SK, Nam KA, Hong CY, et al. (2000) 5-Arylamino-2-methyl-4,7-dioxobenzothiaz?olesas inhibitors of cyclin-dependent kinase 4 and cytotoxic agents. Bioorg Med Chem Lett 10: 461–464. doi: 10.1016/s0960-894x(00)00014-7
[39]  Cicenas J, Valius M (2011) The CDK inhibitors in cancer research and therapy. J Cancer Res Clin Oncol 137: 1409–1418 doi:10.1007/s00432-011-1039-4.
[40]  Diaz-Moralli S, Tarrado-Castellarnau M, Miranda A, Cascante M (2013) Targeting cell cycle regulation in cancer therapy. Pharmacology & Therapeutics. doi:10.1016/j.pharmthera.2013.01.011.
[41]  Sherr CJ (1993) Mammalian G1 cyclins. Cell 73: 1059–1065. doi: 10.1016/0092-8674(93)90636-5
[42]  Pommier Y, Leo E, Zhang H, Marchand C (2010) DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol 17: 421–433 doi:10.1016/j.chembiol.2010.04.012.
[43]  Chauvier D, Ankri S, Charriaut-Marlangue C, Casimir R, Jacotot E (2007) Broad-spectrum caspase inhibitors: from myth to reality? Cell Death Differ 14: 387–391 doi:10.1038/sj.cdd.4402044.
[44]  Zhou BB, Chaturvedi P, Spring K, Scott SP, Johanson RA, et al. (2000) Caffeine abolishes the mammalian G(2)/M DNA damage checkpoint by inhibiting ataxia-telangiectasia-mutated kinase activity. J Biol Chem 275: 10342–10348. doi: 10.1074/jbc.275.14.10342
[45]  Gatei M, Sloper K, Sorensen C, Sylju?sen R, Falck J, et al. (2003) Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation. J Biol Chem 278: 14806–14811 doi:10.1074/jbc.M210862200.
[46]  Zhao H, Piwnica-Worms H (2001) ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol 21: 4129–4139 doi:10.1128/MCB.21.13.4129-4139.2001.
[47]  Rogakou EP, Boon C, Redon C, Bonner WM (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146: 905–916. doi: 10.1083/jcb.146.5.905
[48]  Polo SE, Jackson SP (2011) Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev 25: 409–433 doi:10.1101/gad.2021311.
[49]  Hande KR (1998) Clinical applications of anticancer drugs targeted to topoisomerase II. Biochim Biophys Acta 1400: 173–184. doi: 10.1016/s0167-4781(98)00134-1
[50]  Smart DJ, Halicka HD, Schmuck G, Traganos F, Darzynkiewicz Z, et al. (2008) Assessment of DNA double-strand breaks and gammaH2AX induced by the topoisomerase II poisons etoposide and mitoxantrone. Mutat Res 641: 43–47 doi:10.1016/j.mrfmmm.2008.03.005.
[51]  Pommier Y (2013) Drugging topoisomerases: lessons and challenges. ACS Chem Biol 8: 82–95 doi:10.1021/cb300648v.
[52]  Kurose A, Tanaka T, Huang X, Halicka HD, Traganos F, et al. (2005) Assessment of ATM phosphorylation on Ser-1981 induced by DNA topoisomerase I and II inhibitors in relation to Ser-139-histone H2AX phosphorylation, cell cycle phase, and apoptosis. Cytometry A 68: 1–9 doi:10.1002/cyto.a.20186.
[53]  Huang X, Traganos F, Darzynkiewicz Z (2003) DNA damage induced by DNA topoisomerase I- and topoisomerase II-inhibitors detected by histone H2AX phosphorylation in relation to the cell cycle phase and apoptosis. Cell Cycle 2: 614–619. doi: 10.4161/cc.2.6.565
[54]  Wan X, Zhang W, Li L, Xie Y, Li W, et al. (2013) A new target for an old drug: identifying mitoxantrone as a nanomolar inhibitor of PIM1 kinase via kinome-wide selectivity modeling. J Med Chem 56: 2619–2629 doi:10.1021/jm400045y.
[55]  Bartek J, Lukas C, Lukas J (2004) Checking on DNA damage in S phase. Nat Rev Mol Cell Biol 5: 792–804 doi:10.1038/nrm1493.
[56]  Fedorov O, Marsden B, Pogacic V, Rellos P, Müller S, et al. (2007) A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases. Proceedings of the National Academy of Sciences 104: 20523–20528 doi:10.1073/pnas.0708800104.
[57]  Anastassiadis T, Deacon SW, Devarajan K, Ma H, Peterson JR (2011) Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat Biotechnol 29: 1039–1045 doi:10.1038/nbt.2017.
[58]  Singh M, Singh SK (2013) Benzothiazoles: How Relevant in Cancer Drug Design Strategy? Anticancer Agents Med Chem. doi: 10.2174/18715206113139990312
[59]  Ahmed K, Yellamelli Valli Venkata S, Mohammed NAK, Sultana F, Methuku KR (2012) Recent advances on structural modifications of benzothiazoles and their conjugate systems as potential chemotherapeutics. Expert Opin Investig Drugs 21: 619–635 doi:10.1517/13543784.2012.676043.
[60]  Begleiter A, Blair GW (1984) Quinone-induced DNA damage and its relationship to antitumor activity in L5178Y lymphoblasts. Cancer Res 44: 78–82.
[61]  Yin R, Zhang D, Song Y, Zhu B-Z, Wang H (2013) Potent DNA damage by polyhalogenated quinones and H2O2 via a metal-independent and Intercalation-enhanced oxidation mechanism. Sci Rep 3: 1269 doi:10.1038/srep01269.
[62]  Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ (2000) Role of quinones in toxicology. Chem Res Toxicol 13: 135–160. doi: 10.1021/tx9902082
[63]  Tenca P, Brotherton D, Montagnoli A, Rainoldi S, Albanese C, et al. (2007) Cdc7 is an active kinase in human cancer cells undergoing replication stress. J Biol Chem 282: 208–215 doi:10.1074/jbc.M604457200.
[64]  Suzuki T, Tsuzuku J, Hayashi A, Shiomi Y, Iwanari H, et al. (2012) Inhibition of DNA damage-induced apoptosis through Cdc7-mediated stabilization of Tob. J Biol Chem 287: 40256–40265 doi:10.1074/jbc.M112.353805.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133