全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Src Kinases Regulate De Novo Actin Polymerization during Exocytosis in Neuroendocrine Chromaffin Cells

DOI: 10.1371/journal.pone.0099001

Full-Text   Cite this paper   Add to My Lib

Abstract:

The cortical actin network is dynamically rearranged during secretory processes. Nevertheless, it is unclear how de novo actin polymerization and the disruption of the preexisting actin network control transmitter release. Here we show that in bovine adrenal chromaffin cells, both formation of new actin filaments and disruption of the preexisting cortical actin network are induced by Ca2+ concentrations that trigger exocytosis. These two processes appear to regulate different stages of exocytosis; whereas the inhibition of actin polymerization with the N-WASP inhibitor wiskostatin restricts fusion pore expansion, thus limiting the release of transmitters, the disruption of the cortical actin network with cytochalasin D increases the amount of transmitter released per event. Further, the Src kinase inhibitor PP2, and cSrc SH2 and SH3 domains also suppress Ca2+-dependent actin polymerization, and slow down fusion pore expansion without disturbing the cortical F-actin organization. Finally, the isolated SH3 domain of c-Src prevents both the disruption of the actin network and the increase in the quantal release induced by cytochalasin D. These findings support a model where a rise in the cytosolic Ca2+ triggers actin polymerization through a mechanism that involves Src kinases. The newly formed actin filaments would speed up the expansion of the initial fusion pore, whereas the preexisting actin network might control a different step of the exocytosis process.

References

[1]  Trifaró JM, Rosé SD, Marcu MG (2000) Scinderin, a Ca2+-dependent actin filament severing protein that controls cortical actin network dynamics during secretion. Neurochem Res 25: 133–144.
[2]  Malacombe M, Bader MF, Gasman S (2006) Exocytosis in neuroendocrine cells: new tasks for actin. Biochim Biophys Acta 1763: 1175–1183. doi: 10.1016/j.bbamcr.2006.09.004
[3]  Gasman S, Chasserot-Golaz S, Malacombe M, Way M, Bader MF (2004) Regulated Exocytosis in Neuroendocrine Cells: A Role for Subplasmalemmal Cdc42/N-WASP-induced Actin Filaments. Mol Biol Cell 15: 520–531. doi: 10.1091/mbc.e03-06-0402
[4]  Giner D, Neco P, Francés Mdel M, López I, Viniegra S, et al. (2005) Real-time dynamics of the F-actin cytoskeleton during secretion from chromaffin cells. J Cell Sci 118: 2871–2880. doi: 10.1242/jcs.02419
[5]  Berberian K, Torres AJ, Fang Q, Kisler K, Lindau M (2009) F-actin and myosin II accelerate catecholamine release from chromaffin granules. J Neurosci 29: 863–870. doi: 10.1523/jneurosci.2818-08.2009
[6]  González-Jamett AM, Momboisse F, Guerra MJ, Ory S, Báez-Matus X, et al. (2013) Dynamin-2 regulates fusion pore expansion and quantal release through a mechanism that involves actin dynamics in neuroendocrine chromaffin cells. PLoS One 8: e70638. doi: 10.1371/journal.pone.0070638
[7]  Lindau M, Alvarez de Toledo G (2003) The fusion pore. Biochim Biophys Acta 1641: 167–173. doi: 10.1016/s0167-4889(03)00085-5
[8]  Doreian BW, Fulop TG, Smith CB (2008) Myosin II activation and actin reorganization regulate the mode of quantal exocytosis in mouse adrenal chromaffin cells. J Neurosci 28: 4470–4478. doi: 10.1523/jneurosci.0008-08.2008
[9]  Tehrani S, Tomasevic N, Weed S, Sakowicz R, Cooper JA (2007) Src phosphorylation of cortactin enhances actin assembly. Proc Natl Acad Sci U S A 104: 11933–11938. doi: 10.1073/pnas.0701077104
[10]  Singh VP, McNiven MA (2008) Src-mediated cortactin phosphorylation regulates actin localization and injurious blebbing in acinar cells. Mol Biol Cell 19: 2339–23347. doi: 10.1091/mbc.e07-11-1130
[11]  Torres E, Rosen MK (2006) Protein-tyrosine kinase and GTPase signals cooperate to phosphorylate and activate Wiskott-Aldrich syndrome protein (WASP)/neuronal WASP. J Biol Chem 28: 3513–3520. doi: 10.1074/jbc.m509416200
[12]  Yoo Y, Ho HJ, Wang C, Guan JL (2010) Tyrosine phosphorylation of cofilin at Y68 by v-Src leads to its degradation through ubiquitin-proteasome pathway. Oncogene 29: 263–272. doi: 10.1038/onc.2009.319
[13]  De Corte V, Demol H, Goethals M, Van Damme J, Gettemans J, Vandekerckhove J (1999) Identification of Tyr438 as the major in vitro c-Src phosphorylation site in human gelsolin: a mass spectrometric approach. Protein Sci 8: 234–241. doi: 10.1110/ps.8.1.234
[14]  Finkelstein M, Etkovitz N, Breitbart H (2010) Role and regulation of sperm gelsolin prior to fertilization. J Biol Chem 285: 39702–39709. doi: 10.1074/jbc.m110.170951
[15]  Tatosyan AG, Mizenina OA (2000) Kinases of the Src family: structure and functions. Biochemistry (Mosc) 65: 49–58.
[16]  Parsons SJ, Parsons JT (2004) Src family kinases, key regulators of signal transduction. Oncogene 23: 7906–7909. doi: 10.1038/sj.onc.1208160
[17]  Monteiro AN (2006) Involvement of the SH3 domain in Ca2+-mediated regulation of Src family kinases. Biochimie 88: 905–911. doi: 10.1016/j.biochi.2006.01.013
[18]  Zhao Y, Sudol M, Hanafusa H, Krueger J (1992) Increased Tyrosine Kinase Activity of c-Src During Calcium-Induced Keratinocyte Differentiation. Proc Natl Acad Sci U S A 89: 8298–8302. doi: 10.1073/pnas.89.17.8298
[19]  Allen CM, Ely CM, Juaneza MA, Parsons SJ (1996) Activation of Fyn tyrosine kinase upon secretagogue stimulation of bovine chromaffin cells. J Neurosci Res 44: 421–429. doi: 10.1002/(sici)1097-4547(19960601)44:5<421::aid-jnr2>3.0.co;2-h
[20]  Rusanescu G, Qi H, Thomas SM, Brugge JS, Halegoua S (1995) Calcium influx induces neurite growth through a Src-Ras signaling cassette. Neuron 15: 1415–1425. doi: 10.1016/0896-6273(95)90019-5
[21]  Wang SJ (2003) A role for Src kinase in the regulation of glutamate release from rat cerebrocortical nerve terminals. Neuroreport 14: 1519–1522. doi: 10.1097/00001756-200308060-00024
[22]  Zhang Z, Fan J, Ren Y, Zhou W, Yin G (2013) The release of glutamate from cortical neurons regulated by BDNF via the TrkB/Src/PLC-γ1 pathway. J Cell Biochem 114: 144–1451. doi: 10.1002/jcb.24311
[23]  Parsons SJ, Creutz CE (1986) p60c-src activity detected in the chromaffin granule membrane. Biochem Biophys Res Commun 134: 736–742. doi: 10.1016/s0006-291x(86)80482-x
[24]  Ardiles AO, González-Jamett AM, Maripillán J, Naranjo D, Caviedes P (2007) Calcium channel subtypes differentially regulate fusion pore stability and expansion. J Neurochem 103: 1574–1581. doi: 10.1111/j.1471-4159.2007.04871.x
[25]  Martinez-Quiles N, Ho HY, Kirschner MW, Ramesh N, Geha RS (2004) Erk/Src phosphorylation of cortactin acts as a switch on-switch off mechanism that controls its ability to activate N-WASP. Molecular Cell Biol 24: 5269–5280. doi: 10.1128/mcb.24.12.5269-5280.2004
[26]  Ardiles AO, Maripillán J, Lagos VL, Toro R, Mora IG, et al. (2006) A rapid exocytosis mode in chromaffin cells with a neuronal phenotype. J Neurochem 99: 29–41. doi: 10.1111/j.1471-4159.2006.04080.x
[27]  García-Palomero E, Montiel C, Herrero CJ, García AG, Alvarez RM, et al. (2000) Multiple calcium pathways induce the expression of SNAP-25 protein in chromaffin cells. J Neurochem 74: 1049–10458. doi: 10.1046/j.1471-4159.2000.0741049.x
[28]  Vitale N, Mukai H, Rouot B, Thiersé D, Aunis D, et al. (1993) Exocytosis in chromaffin cells. Possible involvement of the heterotrimeric GTP-binding protein Go. J Biol Chem 268: 14715–14723.
[29]  Wang K, Hackett J, Cox M, Hoek M, Lindstrom J, et al. (2004) Regulation of the Neuronal Nicotinic Acetylcholine Receptor by Src Family Tyrosine Kinases. J Biol Chem 279: 8779–8786. doi: 10.1074/jbc.m309652200
[30]  Wijetunge S, Lymn JS, Hughes AD (2000) Effects of protein tyrosine kinase inhibitors on voltage-operated calcium channel currents in vascular smooth muscle cells and pp60(c-src) kinase activity. Br J Pharmacol 129: 1347–1354. doi: 10.1038/sj.bjp.0703186
[31]  Schroeder TJ, Borges R, Finnegan JM, Pihel K, Amatore C, et al. (1996) Temporally resolved, independent stages of individual exocytotic secretion events. Biophys J 70: 1061–1068. doi: 10.1016/s0006-3495(96)79652-2
[32]  Neco P, Fernández-Peruchena C, Navas S, Gutiérrez LM, de Toledo GA, et al. (2008) Myosin II contributes to fusion pore expansion during exocytosis. J Biol Chem 283: 10949–10957. doi: 10.1074/jbc.m709058200
[33]  Chow RH, Von Rüden L, Neher E (1992) Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature 356: 60–63. doi: 10.1038/356060a0
[34]  Albillos A, Dernick G, Horstmann H, Almers W, Alvarez De Toledo G, et al. (1997) The exocytotic event in chromaffin cells revealed by patch amperometry. Nature 389: 509–512. doi: 10.1038/39081
[35]  Tomatis VM, Papadopulos A, Malintan NT, Martin S, Wallis T, et al. (2013) Myosin VI small insert isoform maintains exocytosis by tethering secretory granules to the cortical actin. J Cell Biol 200: 301–320. doi: 10.1083/jcb.201204092
[36]  Engen JR, Wales TE, Hochrein JM, Meyn MA, Banu Ozkan S, et al. (2008) Structure and dynamic regulation of Src-family kinases. Cell Mol Life Sci 65: 3058–3073. doi: 10.1007/s00018-008-8122-2
[37]  Peterson JR, Bickford LC, Morgan D, Kim AS, Ouerfelli O, et al. (2004) Chemical inhibition of N-WASP by stabilization of a native autoinhibited conformation. Nat Struct Mol Biol 11: 747–755. doi: 10.1038/nsmb796
[38]  Wollman R, Meyer T (2012) Coordinated oscillations in cortical actin and Ca2+ correlate with cycles of vesicle secretion. Nat Cell Biol 14: 261–269. doi: 10.1038/ncb2614
[39]  Dumitrescu Pene T, Rosé SD, Lejen T, Marcu MG, Trifaró JM (2005) Expression of various scinderin domains in chromaffin cells indicates that this protein acts as a molecular switch in the control of actin filament dynamics and exocytosis. J Neurochem 924: 780–789. doi: 10.1111/j.1471-4159.2004.02907.x
[40]  Wu H, Parsons JT (1993) Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex. J Cell Biol 120: 1417–1426. doi: 10.1083/jcb.120.6.1417
[41]  Tehrani S, Tomasevic N, Weed S, Sakowicz R, Cooper JA (2007) Src phosphorylation of cortactin enhances actin assembly. Proc Natl Acad Sci U S A 104: 11933–11938. doi: 10.1073/pnas.0701077104
[42]  Helgeson LA, Nolen BJ (2013) Mechanism of synergistic activation of Arp2/3 complex by cortactin and N-WASP. Elife 2: e00884. doi: 10.7554/elife.00884
[43]  Weaver AM, Heuser JE, Karginov AV, Lee WL, Parsons JT, Cooper JA (2002) Interaction of cortactin and N-WASp with Arp2/3 complex. Curr Biol 12: 1270–1278. doi: 10.1016/s0960-9822(02)01035-7
[44]  Siton O, Ideses Y, Albeck S, Unger T, Bershadsky AD, Gov NS, Bernheim-Groswasser A (2011) Cortactin releases the brakes in actin- based motility by enhancing WASP-VCA detachment from Arp2/3 branches. Curr Biol 21: 2092–7. doi: 10.1016/j.cub.2011.11.010
[45]  González-Jamett AM, Momboisse F, Haro-Acu?a V, Bevilacqua JA, Caviedes P, et al. (2013) Dynamin-2 Function and Dysfunction Along the Secretory Pathway. Front Endocrinol (Lausanne) 4: 126. doi: 10.3389/fendo.2013.00126
[46]  Sever S, Chang J, Gu C (2013) Dynamin rings: not just for fission. Traffic 14: 1194–1199. doi: 10.1111/tra.12116
[47]  Cao H, Chen J, Krueger EW, McNiven MA (2010) Src-mediated phosphorylation of dynamin and cortactin regulates the “constitutive” endocytosis of transferrin. Mol Cell Biol 30: 781–792. doi: 10.1128/mcb.00330-09
[48]  Yamada H, Abe T, Satoh A, Okazaki N, Tago S, et al. (2013) Stabilization of actin bundles by a dynamin 1/cortactin ring complex is necessary for growth cone filopodia. J Neurosci 33: 4514–4426. doi: 10.1523/jneurosci.2762-12.2013
[49]  Samasilp P, Chan SA, Smith C (2012) Activity-dependent fusion pore expansion regulated by a calcineurin-dependent dynamin-syndapin pathway in mouse adrenal chromaffin cells. J Neurosci 32: 10438–10447. doi: 10.1523/jneurosci.1299-12.2012
[50]  Zhou Z, Misler S, Chow RH (1996) Rapid fluctuations in transmitter release from single vesicles in bovine adrenal chromaffin cells. Biophys J 70: 1543–1552. doi: 10.1016/s0006-3495(96)79718-7
[51]  Alés E, Tabares L, Poyato JM, Valero V, Lindau M, et al. (1999) High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism. Nat Cell Biol 1: 40–44. doi: 10.1038/9012
[52]  Guerriero CJ, Weisz OA (2007) N-WASP inhibitor wiskostatin nonselectively perturbs membrane transport by decreasing cellular ATP levels. Am J Physiol Cell Physiol 292: C1562–C1566. doi: 10.1152/ajpcell.00426.2006
[53]  Elhamdani A, Palfrey HC, Artalejo CR (2001) Quantal size is dependent on stimulation frequency and calcium entry in calf chromaffin cells. Neuron 31: 819–830. doi: 10.1016/s0896-6273(01)00418-4
[54]  Egea G, Lázaro-Diéguez F, Vilella M (2006) Actin dynamics at the Golgi complex in mammalian cells. Curr Opin Cell Biol 18: 168–178. doi: 10.1016/j.ceb.2006.02.007

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133