全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

DUF581 Is Plant Specific FCS-Like Zinc Finger Involved in Protein-Protein Interaction

DOI: 10.1371/journal.pone.0099074

Full-Text   Cite this paper   Add to My Lib

Abstract:

Zinc fingers are a ubiquitous class of protein domain with considerable variation in structure and function. Zf-FCS is a highly diverged group of C2-C2 zinc finger which is present in animals, prokaryotes and viruses, but not in plants. In this study we identified that a plant specific domain of unknown function, DUF581 is a zf-FCS type zinc finger. Based on HMM-HMM comparison and signature motif similarity we named this domain as FCS-Like Zinc finger (FLZ) domain. A genome wide survey identified that FLZ domain containing genes are bryophytic in origin and this gene family is expanded in spermatophytes. Expression analysis of selected FLZ gene family members of A. thaliana identified an overlapping expression pattern suggesting a possible redundancy in their function. Unlike the zf-FCS domain, the FLZ domain found to be highly conserved in sequence and structure. Using a combination of bioinformatic and protein-protein interaction tools, we identified that FLZ domain is involved in protein-protein interaction.

References

[1]  The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815. doi: 10.1038/35048692
[2]  Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, et al. (2012) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40: D1202–D1210. doi: 10.1093/nar/gkr1090
[3]  Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, et al. (2008) The Pfam protein families database. Nucleic Acids Res 36: D281–D288. doi: 10.1093/nar/gkm960
[4]  Prakash A, Yogeeshwari S, Sircar S, Agrawal S (2011) Protein domain of unknown function 3233 is a translocation domain of autotransporter secretory mechanism in gamma proteobacteria. PLoS One 6: e25570. doi: 10.1371/journal.pone.0025570
[5]  Dlaki? M (2006) DUF283 domain of Dicer proteins has a double-stranded RNA-binding fold. Bioinformatics 22: 2711–2714. doi: 10.1093/bioinformatics/btl468
[6]  Qin H, Chen F, Huan X, Machida S, Song J, et al. (2010) Structure of the Arabidopsis thaliana DCL4 DUF283 domain reveals a noncanonical double-stranded RNA-binding fold for protein-protein interaction. RNA 1: 474–481. doi: 10.1261/rna.1965310
[7]  Jaroszewski L, Li Z, Krishna SS, Bakolitsa C, Wooley J, Deacon AM, et al. (2009) Exploration of uncharted regions of the protein universe PLoS Biol. 7: e1000205. doi: 10.1371/journal.pbio.1000205
[8]  He Y, Tang W, Swain JD, Green AL, Jack TP, et al. (2001) Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiol 126: 707–716. doi: 10.1104/pp.126.2.707
[9]  He Y, Gan S (2004) A novel zinc-finger protein with a proline-rich domain mediates ABA-regulated seed dormancy in Arabidopsis. Plant Mol Biol 54: 1–9. doi: 10.1023/b:plan.0000028730.10834.e3
[10]  Arabidopsis Interactome Mapping Consortium (2011) Evidence for network evolution in an Arabidopsis interactome map. Science 333: 601–607.
[11]  Reiter A, Sohal J, Kulkarni S, Chase A, Macdonald DH, et al. (1998) Consistent fusion of ZNF198 to the fibroblast growth factor receptor-1 in the t(8;13)(p11;q12) myeloproliferative syndrome. Blood 92: 1735–1742.
[12]  Morey L, Helin K (2010) Polycomb group protein-mediated repression of transcription. Trends Biochem Sci 35: 323–332. doi: 10.1016/j.tibs.2010.02.009
[13]  Beuchle D, Struhl G, Müller J (2001) Polycomb group proteins and heritable silencing of Drosophila Hox genes. Development 128: 993–1004.
[14]  K?hler C, Villar CB (2008) Programming of gene expression by Polycomb group proteins. Trends Cell Biol 18: 236–243. doi: 10.1016/j.tcb.2008.02.005
[15]  Zhang H, Christoforou A, Aravind L, Emmons SW, van den Heuvel S, et al. (2004) The C. elegans polycomb gene SOP-2 encodes an RNA binding protein. Mol Cell 14: 841–847. doi: 10.1016/j.molcel.2004.06.001
[16]  Wang R, Ilangovan U, Leal BZ, Robinson AK, Amann BT, et al. (2011) Identification of nucleic acid binding residues in the FCS domain of the polycomb group protein polyhomeotic. Biochemistry 50: 4998–5007. doi: 10.1021/bi101487s
[17]  Lechtenberg BC, Allen MD, Rutherford TJ, Freund SM, Bycroft M (2009) Solution structure of the FCS zinc finger domain of the human polycomb group protein L(3)mbt-like 2. Protein Sci 18: 657–661. doi: 10.1002/pro.51
[18]  Grimm C, Matos R, Ly-Hartig N, Steuerwald U, Lindner D, et al. (2009) Molecular recognition of histone lysine methylation by the Polycomb group repressor dSfmbt. EMBO J 28: 1965–1977. doi: 10.1038/emboj.2009.147
[19]  Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, et al. (2012) InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 40: D306–12. doi: 10.1093/nar/gkr948
[20]  Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, et al. (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40: D1178–D1186. doi: 10.1093/nar/gkr944
[21]  Proost S, Van Bel M, Sterck L, Billiau K, Van Parys T, et al. (2009) PLAZA: a comparative genomics resource to study gene and genome evolution in plants. Plant Cell 21: 3718–3731. doi: 10.1105/tpc.109.071506
[22]  Sayers EW, Barrett T, Benson DA, Bryant SH, Canese K, et al. (2009) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 37: D5–D15. doi: 10.1093/nar/gkn741
[23]  The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485: 635–641. doi: 10.3410/f.716897855.792202855
[24]  Nystedt B, Street NR, Wetterbom A, et al. (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497: 579–584. doi: 10.1038/nature12211
[25]  Ettema TJ, Huynen MA, de Vos WM, van der Oost J (2003) TRASH: a novel metal-binding domain predicted to be involved in heavy-metal sensing, trafficking and resistance. Trends Biochem Sci 28: 170–173. doi: 10.1016/s0968-0004(03)00037-9
[26]  Pérez-Pérez JM, Esteve-Bruna D, González-Bayón R, et al. (2013) Functional redundancy and divergence within the Arabidopsis RETICULATA-RELATED gene family. Plant Physiol 162: 589–603. doi: 10.1104/pp.113.217323
[27]  Overvoorde PJ, Okushima Y, Alonso JM, et al. (2005) Functional genomic analysis of the AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabidopsis thaliana. Plant Cell 17: 3282–3300. doi: 10.1105/tpc.105.036723
[28]  Krishna SS, Majumdar I, Grishin NV (2003) Structural classification of zinc fingers: survey and summary. Nucleic Acids Res 31: 532–550. doi: 10.1093/nar/gkg161
[29]  Pace CN, Scholtz JM (1998) A helix propensity scale based on experimental studies of peptides and proteins. Biophys J 75: 422–427. doi: 10.1016/s0006-3495(98)77529-0
[30]  Farzadfard F, Gharaei N, Pezeshk H, Marashi SA (2008) Beta-sheet capping: signals that initiate and terminate beta-sheet formation. J Struct Biol 161: 101–110. doi: 10.1016/j.jsb.2007.09.024
[31]  Zdobnov EM, Apweiler R (2001) InterProScan-an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17: 847–848. doi: 10.1093/bioinformatics/17.9.847
[32]  Jones DT, Taylor WR, Thornton JM (1992) A new approach to protein fold recognition. Nature 358: 86–89. doi: 10.1038/358086a0
[33]  Miller RT, Jones DT, Thornton JM (1996) Protein fold recognition by sequence threading: tools and assessment techniques. FASEB J 10: 171–178.
[34]  Kadrmas JL, Beckerle MC (2004) The LIM domain: from the cytoskeleton to the nucleus. Nat Rev Mol Cell Biol 5: 920–931. doi: 10.1038/nrm1499
[35]  Wu R, Terry AV, Singh PB, Gilbert DM (2005) Differential subnuclear localization and replication timing of histone H3 lysine 9 methylation states. Mol Biol Cell 16: 2872–2881. doi: 10.1091/mbc.e04-11-0997
[36]  van Koningsbruggen S, Dirks RW, Mommaas AM, Onderwater JJ, Deidda G, et al. (2004) FRG1P is localised in the nucleolus, Cajal bodies, and speckles. J Med Genet 41: e46. doi: 10.1136/jmg
[37]  Onodera Y, Haag JR, Ream T, Costa Nunes P, Pontes O, et al. (2005) Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120: 613–622. doi: 10.1016/j.cell.2005.02.007
[38]  Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, et al. (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473: 97–100. doi: 10.1038/nature09916
[39]  Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4: 10.
[40]  Datta S, Hettiarachchi C, Johansson H, Holm M (2007) SALT TOLERANCE HOMOLOG2, a B-box protein in Arabidopsis that activates transcription and positively regulates light-mediated development. Plant Cell 19: 3242–3255. doi: 10.1105/tpc.107.054791
[41]  Crocco CD, Holm M, Yanovsky MJ, Botto JF (2010) AtBBX21 and COP1 genetically interact in the regulation of shade avoidance. Plant J 64: 551–562. doi: 10.1111/j.1365-313x.2010.04360.x
[42]  Coggill P, Eberhardt RY, Finn RD, Chang Y, Jaroszewski L, et al. (2013) Two Pfam protein families characterized by a crystal structure of protein lpg2210 from Legionella pneumophila. BMC Bioinformatics 3 14: 265. doi: 10.1186/1471-2105-14-265
[43]  Takatsuji H, Matsumoto T (1996) Target-sequence recognition by separate-type Cys2/His2 zinc finger proteins in plants. J Biol Chem 271: 23368–23373. doi: 10.1074/jbc.271.38.23368
[44]  Kubo Ki, Sakamoto A, Kobayashi A, Rybka Z, Kanno Y, et al. (1998) Cys2/His2 zinc-finger protein family of petunia: evolution and general mechanism of target-sequence recognition. Nucleic Acids Res 26: 608–615. doi: 10.1093/nar/26.2.608
[45]  Goldstein RA (2008) The structure of protein evolution and the evolution of protein structure. Curr Opin Struct Biol 18: 170–177. doi: 10.1016/j.sbi.2008.01.006
[46]  Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948. doi: 10.1093/bioinformatics/btm404
[47]  Biegert A, Mayer C, Remmert M, S?ding J, Lupas AN (2006) The MPI bioinformatics toolkit for protein sequence analysis. Nucleic Acids Res 34: W335–W339. doi: 10.1093/nar/gkl217
[48]  Brown NP, Leroy C, Sander C (1998) MView: a web-compatible database search or multiple alignment viewer. Bioinformatics 14: 380–381. doi: 10.1093/bioinformatics/14.4.380
[49]  Schuster-B?ckler B, Bateman A (2005) Visualizing profile-profile alignment: pairwise HMM logos. Bioinformatics 21: 2912–2913. doi: 10.1093/bioinformatics/bti434
[50]  Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4: 363–371. doi: 10.1038/nprot.2009.2
[51]  Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14: 1188–1190. doi: 10.1101/gr.849004
[52]  Sigrist CJA, de Castro E, Cerutti L, Cuche BA, Hulo N, et al. (2009) New and continuing developments at PROSITE. Nucleic Acids Res 41: D344–377. doi: 10.1093/nar/gks1067
[53]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 28: 2731–2739. doi: 10.1093/molbev/msr121
[54]  Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, et al. (2007) An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2: e718. doi: 10.1371/journal.pone.0000718
[55]  Tzfira T, Tian GW, Lacroix B, Vyas S, Li J, et al. (2005) pSAT vectors: a modular series of plasmids for fluorescent protein tagging and expression of multiple genes in plants. Plant Mol Biol 57: 503–516. doi: 10.1007/s11103-005-0340-5
[56]  Citovsky V, Lee LY, Vyas S, Glick E, Chen MH, et al. (2006) Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta. J Mol Biol 362: 1120–1131. doi: 10.1016/j.jmb.2006.08.017
[57]  Earley KW, Haag JR, Pontes O, Opper K, Juehne T, et al. (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45: 616–629. doi: 10.1111/j.1365-313x.2005.02617.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133