[1] | Raichle ME (2009) A paradigm shift in functional brain imaging. J Neurosci 29: 12729–12734. doi: 10.1523/jneurosci.4366-09.2009
|
[2] | Calhoun VD, Kiehl KA, Pearlson GD (2008) Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Hum Brain Mapp 29: 828–838. doi: 10.1002/hbm.20581
|
[3] | van de Ven VG, Formisano E, Prvulovic D, Roeder CH, Linden DE (2004) Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Hum Brain Mapp 22: 165–178. doi: 10.1002/hbm.20022
|
[4] | Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006) Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci U S A 103: 10046–10051. doi: 10.1073/pnas.0604187103
|
[5] | Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34: 537–541. doi: 10.1002/mrm.1910340409
|
[6] | Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, et al. (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci U S A 106: 13040–13045. doi: 10.1073/pnas.0905267106
|
[7] | Hampson M, Driesen NR, Skudlarski P, Gore JC, Constable RT (2006) Brain connectivity related to working memory performance. J Neurosci 26: 13338–13343. doi: 10.1523/jneurosci.3408-06.2006
|
[8] | Kelly AMC, Uddin LQ, Biswal BB, Castellanos FX, Milham MP (2008) Competition between functional brain networks mediates behavioral variability. Neuroimage 39: 527–537. doi: 10.1016/j.neuroimage.2007.08.008
|
[9] | Mennes M, Kelly C, Zuo XN, Martino AD, Biswal BB, et al. (2010) Inter-individual differences in resting-state functional connectivity predict task-induced BOLD activity. Neuroimage 50: 1690–1701. doi: 10.1016/j.neuroimage.2010.01.002
|
[10] | Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, et al. (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27: 2349–2356. doi: 10.1523/jneurosci.5587-06.2007
|
[11] | Sadaghiani S, Hesselmann G, Friston KJ, Kleinschmidt A (2010) The relation of ongoing brain activity, evoked neural responses, and cognition. Front Syst Neurosci 4: 20. doi: 10.3389/fnsys.2010.00020
|
[12] | Boly M, Balteau E, Schnakers C, Degueldre C, Moonen G, et al. (2007) Baseline brain activity fluctuations predict somatosensory perception in humans. Proc Natl Acad Sci U S A 104: 12187–12192. doi: 10.1073/pnas.0611404104
|
[13] | Sadaghiani S, Hesselmann G, Kleinschmidt A (2009) Distributed and antagonistic contributions of ongoing activity fluctuations to auditory stimulus detection. J Neurosci 29: 13410–13417. doi: 10.1523/jneurosci.2592-09.2009
|
[14] | Hesselmann G, Kell CA, Eger E, Kleinschmidt A (2008) Spontaneous local variations in ongoing neural activity bias perceptual decisions. Proc Natl Acad Sci U S A 105: 10984–10989. doi: 10.1073/pnas.0712043105
|
[15] | Hesselmann G, Kell CA, Kleinschmidt A (2008) Ongoing activity fluctuations in hMT+ bias the perception of coherent visual motion. J Neurosci 28: 14481–14485. doi: 10.1523/jneurosci.4398-08.2008
|
[16] | Fox MD, Snyder AZ, Vincent JL, Raichle ME (2007) Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron 56: 171–184. doi: 10.1016/j.neuron.2007.08.023
|
[17] | Fox MD, Snyder AZ, Zacks JM, Raichle ME (2006) Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses. Nature Neuroscience 9: 23–25. doi: 10.1038/nn1616
|
[18] | Dosenbach NUF, Visscher KM, Palmer ED, Miezin FM, Wenger KK, et al. (2006) A core system for the implementation of task sets. Neuron 50: 799–812. doi: 10.1016/j.neuron.2006.04.031
|
[19] | Dosenbach NUF, Fair DA, Miezin FM, Cohen AL, Wenger KK, et al. (2007) Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci U S A 104: 11073–11078. doi: 10.1073/pnas.0704320104
|
[20] | Dosenbach NUF, Fair DA, Cohen AL, Schlaggar BL, Petersen SE (2008) A dual-networks architecture of top-down control. Trends Cogn Sci 12: 99–105. doi: 10.1016/j.tics.2008.01.001
|
[21] | Cocchi L, Zalesky A, Fornito A, Mattingley JB (2013) Dynamic cooperation and competition between brain systems during cognitive control. Trends Cogn Sci 17: 493–501. doi: 10.1016/j.tics.2013.08.006
|
[22] | Fox MD, Snyder AZ, Vincent JL, Corbetta M, Essen DCV, et al. (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102: 9673–9678. doi: 10.1073/pnas.0504136102
|
[23] | Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, et al. (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98: 676–682. doi: 10.1073/pnas.98.2.676
|
[24] | Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124: 1–38. doi: 10.1196/annals.1440.011
|
[25] | Weissman DH, Roberts KC, Visscher KM, Woldorff MG (2006) The neural bases of momentary lapses in attention. Nat Neurosci 9: 971–978. doi: 10.1038/nn1727
|
[26] | Eichele T, Debener S, Calhoun VD, Specht K, Engel AK, et al. (2008) Prediction of human errors by maladaptive changes in event-related brain networks. Proc Natl Acad Sci U S A 105: 6173–6178. doi: 10.1073/pnas.0708965105
|
[27] | Li CSR, Yan P, Bergquist KL, Sinha R (2007) Greater activation of the “default” brain regions predicts stop signal errors. Neuroimage 38: 640–648. doi: 10.1016/j.neuroimage.2007.07.021
|
[28] | Coste CP, Sadaghiani S, Friston KJ, Kleinschmidt A (2011) Ongoing brain activity fluctuations directly account for intertrial and indirectly for intersubject variability in Stroop task performance. Cereb Cortex 21: 2612–2619. doi: 10.1093/cercor/bhr050
|
[29] | Logan GD, Gordon RD (2001) Executive control of visual attention in dual-task situations. Psychol Rev 108: 393–434. doi: 10.1037/0033-295x.108.2.393
|
[30] | Kane MJ, Engle RW (2003) Working-memory capacity and the control of attention: the contributions of goal neglect, response competition, and task set to Stroop interference. J Exp Psychol Gen 132: 47–70.
|
[31] | Egner T, Hirsch J (2005) The neural correlates and functional integration of cognitive control in a Stroop task. Neuroimage 24: 539–547. doi: 10.1016/j.neuroimage.2004.09.007
|
[32] | MacLeod CM (1991) Half a century of research on the Stroop effect: an integrative review. Psychol Bull 109: 163–203. doi: 10.1037/0033-2909.109.2.163
|
[33] | MacLeod CM, MacDonald PA (2000) Interdimensional interference in the Stroop effect: uncovering the cognitive and neural anatomy of attention. Trends Cogn Sci 4: 383–391. doi: 10.1016/s1364-6613(00)01530-8
|
[34] | Laird AR, McMillan KM, Lancaster JL, Kochunov P, Turkeltaub PE, et al. (2005) A comparison of label-based review and ALE meta-analysis in the Stroop task. Hum Brain Mapp 25: 6–21. doi: 10.1002/hbm.20129
|
[35] | Bressler SL, Tang W, Sylvester CM, Shulman GL, Corbetta M (2008) Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. J Neurosci 28: 10056–10061. doi: 10.1523/jneurosci.1776-08.2008
|
[36] | Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58: 306–324. doi: 10.1016/j.neuron.2008.04.017
|
[37] | Oldfield RC (1971) The assessment and analysis of handedness: the edinburgh inventory. Neuropsychologia 9: 97–113. doi: 10.1016/0028-3932(71)90067-4
|
[38] | Milham MP, Banich MT, Barad V (2003) Competition for priority in processing increases prefrontal cortex’s involvement in top-down control: an event-related fMRI study of the Stroop task. Brain Res Cogn Brain Res 17: 212–222. doi: 10.1016/s0926-6410(03)00108-3
|
[39] | Milham MP, Banich MT, Webb A, Barad V, Cohen NJ, et al. (2001) The relative involvement of anterior cingulate and prefrontal cortex in attentional control depends on nature of conflict. Brain Res Cogn Brain Res 12: 467–473. doi: 10.1016/s0926-6410(01)00076-3
|
[40] | Leber AB (2010) Neural predictors of within-subject fluctuations in attentional control. J Neurosci 30: 11458–11465. doi: 10.1523/jneurosci.0809-10.2010
|
[41] | Leber AB, Turk-Browne NB, Chun MM (2008) Neural predictors of moment-to-moment fluctuations in cognitive flexibility. Proc Natl Acad Sci U S A 105: 13592–13597. doi: 10.1073/pnas.0805423105
|
[42] | Allen EA, Erhardt EB, Damaraju E, Gruner W, Segall JM, et al. (2011) A baseline for the multivariate comparison of resting-state networks. Front Syst Neurosci 5: 2. doi: 10.3389/fnsys.2011.00002
|
[43] | Zuo XN, Kelly C, Adelstein JS, Klein DF, Castellanos FX, et al. (2010) Reliable intrinsic connectivity networks: test-retest evaluation using ICA and dual regression approach. Neuroimage 49: 2163–2177. doi: 10.1016/j.neuroimage.2009.10.080
|
[44] | Calhoun VD, Liu J, Adali T (2009) A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage 45: S163–S172. doi: 10.1016/j.neuroimage.2008.10.057
|
[45] | Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360: 1001–1013. doi: 10.1098/rstb.2005.1634
|
[46] | Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam CJ, et al. (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103: 13848–13853. doi: 10.1073/pnas.0601417103
|
[47] | Li YO, Adali T, Calhoun VD (2007) Estimating the number of independent components for functional magnetic resonance imaging data. Hum Brain Mapp 28: 1251–1266. doi: 10.1002/hbm.20359
|
[48] | Calhoun V, Adali T, Pearlson G, Pekar J (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14: 140–151. doi: 10.1002/hbm.1048
|
[49] | Correa N, Adali T, Calhoun VD (2007) Performance of blind source separation algorithms for fMRI analysis using a group ICA method. Magn Reson Imaging 25: 684–694. doi: 10.1016/j.mri.2006.10.017
|
[50] | Himberg J, Hyvarinen A, Esposito F (2004) Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage 22: 1214–1222. doi: 10.1016/j.neuroimage.2004.03.027
|
[51] | Erhardt EB, Rachakonda S, Bedrick EJ, Allen EA, Adali T, et al. (2011) Comparison of multi-subject ICA methods for analysis of fMRI data. Hum Brain Mapp 32: 2075–2095. doi: 10.1002/hbm.21170
|
[52] | Birn RM, Diamond JB, Smith MA, Bandettini PA (2006) Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. Neuroimage 31: 1536–1548. doi: 10.1016/j.neuroimage.2006.02.048
|
[53] | Abou-Elseoud A, Starck T, Remes J, Nikkinen J, Tervonen O, et al. (2010) The effect of model order selection in group PICA. Hum Brain Mapp 31: 1207–1216. doi: 10.1002/hbm.20929
|
[54] | Cole DM, Smith SM, Beckmann CF (2010) Advances and pitfalls in the analysis and interpretation of resting-state fMRI data. Front Syst Neurosci 4: 8. doi: 10.3389/fnsys.2010.00008
|
[55] | Robinson S, Basso G, Soldati N, Sailer U, Jovicich J, et al. (2009) A resting state network in the motor control circuit of the basal ganglia. BMC Neurosci 10: 137. doi: 10.1186/1471-2202-10-137
|
[56] | Jafri MJ, Pearlson GD, Stevens M, Calhoun VD (2008) A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage 39: 1666–1681. doi: 10.1016/j.neuroimage.2007.11.001
|
[57] | R Development Core Team (2008) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available: http://www.R-project.org. ISBN 3–900051–07–0.
|
[58] | Gordon EM, Stollstorff M, Vaidya CJ (2012) Using spatial multiple regression to identify intrinsic connectivity networks involved in working memory performance. Hum Brain Mapp 33: 1536–1552. doi: 10.1002/hbm.21306
|
[59] | Shirer WR, Ryali S, Rykhlevskaia E, Menon V, Greicius MD (2012) Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb Cortex 22: 158–165. doi: 10.1093/cercor/bhr099
|
[60] | Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, et al. (2014) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24: 663–676. doi: 10.1093/cercor/bhs352
|
[61] | Cheyne JA, Carriere JSA, Solman GJF, Smilek D (2011) Challenge and error: critical events and attention-related errors. Cognition 121: 437–446. doi: 10.1016/j.cognition.2011.07.010
|
[62] | Leung HC, Skudlarski P, Gatenby JC, Peterson BS, Gore JC (2000) An event-related functional MRI study of the Stroop color word interference task. Cereb Cortex 10: 552–560. doi: 10.1093/cercor/10.6.552
|
[63] | Botvinick MM, Cohen JD, Carter CS (2004) Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn Sci 8: 539–546. doi: 10.1016/j.tics.2004.10.003
|
[64] | Kerns JG, Cohen JD, MacDonald AW, Cho RY, Stenger VA, et al. (2004) Anterior cingulate conflict monitoring and adjustments in control. Science 303: 1023–1026. doi: 10.1126/science.1089910
|
[65] | Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci U S A 105: 12569–12574. doi: 10.1073/pnas.0800005105
|
[66] | Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214: 655–667. doi: 10.1007/s00429-010-0262-0
|
[67] | Hasenkamp W, Wilson-Mendenhall CD, Duncan E, Barsalou LW (2012) Mind wandering and attention during focused meditation: a fine-grained temporal analysis of fluctuating cognitive states. Neuroimage 59: 750–760. doi: 10.1016/j.neuroimage.2011.07.008
|
[68] | Tang YY, Rothbart MK, Posner MI (2012) Neural correlates of establishing, maintaining, and switching brain states. Trends Cogn Sci 16: 330–337. doi: 10.1016/j.tics.2012.05.001
|
[69] | Craig ADB (2009) How do you feel–now? The anterior insula and human awareness. Nat Rev Neurosci 10: 59–70. doi: 10.1038/nrn2555
|
[70] | Cohen L, Lehéricy S, Chochon F, Lemer C, Rivaud S, et al. (2002) Language-specific tuning of visual cortex? Functional properties of the visual word form area. Brain 125: 1054–1069. doi: 10.1093/brain/awf094
|
[71] | Lotze M, Erb M, Flor H, Huelsmann E, Godde B, et al. (2000) fMRI evaluation of somatotopic representation in human primary motor cortex. Neuroimage 11: 473–481. doi: 10.1006/nimg.2000.0556
|
[72] | Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3: 201–215. doi: 10.1038/nrn755
|
[73] | Fair DA, Schlaggar BL, Cohen AL, Miezin FM, Dosenbach NUF, et al. (2007) A method for using blocked and event-related fMRI data to study “resting state” functional connectivity. Neuroimage 35: 396–405. doi: 10.1016/j.neuroimage.2006.11.051
|
[74] | Fransson P (2006) How default is the default mode of brain function? further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia 44: 2836–2845. doi: 10.1016/j.neuropsychologia.2006.06.017
|
[75] | Barnes A, Bullmore ET, Suckling J (2009) Endogenous human brain dynamics recover slowly following cognitive effort. PLoS ONE 4: e6626. doi: 10.1371/journal.pone.0006626
|
[76] | Hasson U, Nusbaum HC, Small SL (2009) Task-dependent organization of brain regions active during rest. Proc Natl Acad Sci U S A 106: 10841–10846. doi: 10.1073/pnas.0903253106
|
[77] | Lewis CM, Baldassarre A, Committeri G, Romani GL, Corbetta M (2009) Learning sculpts the spontaneous activity of the resting human brain. Proc Natl Acad Sci U S A 106: 17558–17563. doi: 10.1073/pnas.0902455106
|
[78] | Albert NB, Robertson EM, Miall RC (2009) The resting human brain and motor learning. Curr Biol 19: 1023–1027. doi: 10.1016/j.cub.2009.04.028
|
[79] | Tambini A, Ketz N, Davachi L (2010) Enhanced brain correlations during rest are related to memory for recent experiences. Neuron 65: 280–290. doi: 10.1016/j.neuron.2010.01.001
|
[80] | Raichle ME, Snyder AZ (2007) A default mode of brain function: A brief history of an evolving idea. Neuroimage 37: 1083–1090. doi: 10.1016/j.neuroimage.2007.02.041
|