全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Interactome Profile of the Host Cellular Proteins and the Nonstructural Protein 2 of Porcine Reproductive and Respiratory Syndrome Virus

DOI: 10.1371/journal.pone.0099176

Full-Text   Cite this paper   Add to My Lib

Abstract:

The nonstructural protein 2 (NSP2) is considered to be one of crucial viral proteins in the replication and pathogenesis of porcine reproductive and respiratory syndrome virus (PRRSV). In the present study, the host cellular proteins that interact with the NSP2 of PRRSV were immunoprecipitated with anti-Myc antibody from the MARC-145 cells infected by a recombinant PRRSV with 3xMyc tag insertion in its NSP2-coding region, and then 285 cellular proteins interacting with NSP2 were identified by LC-MS/MS. The Gene Ontology and enriched KEGG Pathway bioinformatics analyses indicated that the identified proteins could be assigned to different subcellular locations and functional classes. Functional analysis of the interactome profile highlighted cellular pathways associated with infectious disease, translation, immune system, nervous system and signal transduction. Two interested cellular proteins–BCL2-associated athanogene 6 (BAG6) and apoptosis-inducing factor 1 (AIF1) which may involve in transporting of NSP2 to Endoplasmic reticulum (ER) or PRRSV-driven apoptosis were validated by Western blot. The interactome data between PRRSV NSP2 and cellular proteins contribute to the understanding of the roles of NSP2 in the replication and pathogenesis of PRRSV, and also provide novel cellular target proteins for elucidating the associated molecular mechanisms of the interaction of host cellular proteins with viral proteins in regulating the viral replication.

References

[1]  Neumann EJ, Kliebenstein JB, Johnson CD, Mabry JW, Bush EJ, et al. (2005) Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States. J Am Vet Med Assoc 227: 385–392. doi: 10.2460/javma.2005.227.385
[2]  Garner MG, Whan IF, Gard GP, Phillips D (2001) The expected economic impact of selected exotic diseases on the pig industry of Australia. Rev Sci Tech 20: 671–685.
[3]  Keffaber KK (1989) Reproductive failure of unknown etiology. Am Assoc Swine Pract Newsletter 1: 1–10.
[4]  Albina E (1997) Porcine reproductive and respiratory syndrome: ten years of experience (1986–1996) with this undesirable viral infection. Vet Res 28: 305–352.
[5]  Zhou L, Yang H (2010) Porcine reproductive and respiratory syndrome in China. Virus Res 154: 31–37. doi: 10.1016/j.virusres.2010.07.016
[6]  Cavanagh D (1997) Nidovirales: a new order comprising Coronaviridae and Arteriviridae. Arch Virol 142: 629–633.
[7]  Benfield DA, Nelson E, Collins JE, Harris L, Goyal SF, et al. (1992) Characterization of swine infertility and respiratory syndrome (SIRS) virus (isolate ATCC VR-2332). J Vet Diagn Invest 4: 127–133. doi: 10.1177/104063879200400202
[8]  Firth AE, Zevenhoven-Dobbe JC, Wills NM, Go YY, Balasuriya UB, et al. (2011) Discovery of a small arterivirus gene that overlaps the GP5 coding sequence and is important for virus production. J Gen Virol 92: 1097–1106. doi: 10.1099/vir.0.029264-0
[9]  Johnson CR, Griggs TF, Gnanandarajah J, Murtaugh MP (2011) Novel structural protein in porcine reproductive and respiratory syndrome virus encoded by an alternative ORF5 present in all arteriviruses. J Gen Virol 92: 1107–1116. doi: 10.1099/vir.0.030213-0
[10]  Fang Y, Treffers EE, Li Y, Tas A, Sun Z, et al. (2012) Efficient-2 frameshifting by mammalian ribosomes to synthesize an additional arterivirus protein. Proc Natl Acad Sci USA 109: E2920–E2928. doi: 10.1073/pnas.1211145109
[11]  Music N, Gagnon CA (2010) The role of porcine reproductive and respiratory syndrome (PRRS) virus structural and non-structural proteins in virus pathogenesis. Anim Health Res Rev 11: 135–163. doi: 10.1017/s1466252310000034
[12]  Han J, Liu G, Wang Y, Faaberg KS (2007) Identification of nonessential regions of the nsp2 replicase protein ofporcine reproductive and respiratory syndrome virus strain VR-2332 for replication in cell culture. J Virol 81: 9878–9890. doi: 10.1128/jvi.00562-07
[13]  Han J, Wang Y, Faaberg KS (2006) Complete genome analysis of RFLP 184 isolates of porcine reproductive and respiratory syndrome virus. Virus Res 122: 175–182. doi: 10.1016/j.virusres.2006.06.003
[14]  Kim DY, Calvert JG, Chang KO, Horlen K, Kerrigan M, et al. (2007) Expression and stability of foreign tags inserted into nsp2 of porcine reproductive and respiratory syndrome virus (PRRSV). Virus Res 128: 106–114. doi: 10.1016/j.virusres.2007.04.019
[15]  Zhou L, Zhang J, Zeng J, Yin S, Li Y, el al (2009) The 30-amino-acid deletion in the Nsp2 of highly pathogenic porcine reproductive and respiratory syndrome virus emerging in China is not related to its virulence. J Virol 83: 5156–5167. doi: 10.1128/jvi.02678-08
[16]  Zhou L, Chen S, Zhang J, Zeng J, Guo X, el al (2009) Molecular variation analysis of porcine reproductive and respiratory syndrome virus in China. Virus Res 145: 97–105. doi: 10.1016/j.virusres.2009.06.014
[17]  Han J, Rutherford MS, Faaberg KS (2009) The porcine reproductive and respiratory syndrome virus nsp2 cysteine protease domain possesses both trans- and cis-cleavage activities. J Virol 83: 9449–9463. doi: 10.1128/jvi.00834-09
[18]  Han J, Rutherford MS, Faaberg KS (2010) Proteolytic products of the porcine reproductive and respiratory syndrome virus nsp2 replicase protein. J Virol. 84: 10102–10112. doi: 10.1128/jvi.01208-10
[19]  Snijder EJ, Wassenaar AL, Spaan WJ, Gorbalenya AE (1995) The arterivirus Nsp2 protease. An unusual cysteine protease with primary structure similarities to both papain-like and chymotrypsin-like proteases. J Biol Chem 270: 16671–16676. doi: 10.1074/jbc.270.28.16671
[20]  Knoops K, Barcena M, Limpens RW, Koster AJ, Mommaas AM, et al. (2011) Ultrastructural characterization of arterivirus replication structures: reshaping the endoplasmic reticulum to accommodate viral RNA synthesis. J Virol 86: 2474–2487. doi: 10.1128/jvi.06677-11
[21]  Pedersen KW, van der Meer Y, Roos N, Snijder EJ (1999) Open reading frame 1a-encoded subunits of the arterivirus replicase induce endoplasmic reticulum-derived double-membrane vesicles which carry the viral replication complex. J. Virol 73: 2016–2026.
[22]  Snijder EJ, van Tol H, Roos N, Pedersen KW (2001) Non-structural proteins 2 and 3 interact to modify host cell membranes during the formation of the arterivirus replication complex. J Gen Virol 82: 985–994.
[23]  Clementz MA, Chen Z, Banach BS, Wang Y, Sun L, et al. (2010) Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases. J Virol 84: 4619–4629. doi: 10.1128/jvi.02406-09
[24]  Frias-Staheli N, Giannakopoulos NV, Kikkert M, Taylor SL, Bridgen A, et al. (2007) Ovarian tumor domain-containing viral proteases evade ubiquitin- and ISG15-dependent innate immune responses. Cell Host Microbe 2: 404–416. doi: 10.1016/j.chom.2007.09.014
[25]  Sun Z, Chen Z, Lawson SR, Fang Y (2010) The cysteine protease domain of porcine reproductive and respiratory syndrome virus nonstructural protein 2 possesses deubiquitinating and interferon antagonism functions. J Virol 84: 7832–7846. doi: 10.1128/jvi.00217-10
[26]  Sun Z, Li Y, Ransburgh R, Snijder EJ, Fang Y (2012) Nonstructural protein 2 of porcine reproductive and respiratory syndrome virus inhibits the antiviral function of interferon-stimulated gene 15. J Virol 86: 3839–3850. doi: 10.1128/jvi.06466-11
[27]  Bhoj VG, Chen ZJ (2009) Ubiquitylation in innate and adaptive immunity. Nature 458: 430–437. doi: 10.1038/nature07959
[28]  Liu YC, Penninger J, Karin M (2005) Immunity by ubiquitylation: a reversible process of modification. Nat Rev Immunol 5: 941–952. doi: 10.1038/nri1731
[29]  van Kasteren PB, Beugeling C, Ninaber DK, Frias-Staheli N, van Boheemen S, et al. (2011) Arterivirus and nairovirus ovarian tumor domain-containing deubiquitinases target activated RIG-I to control innate immune signaling. J Virol 86: 773–785. doi: 10.1128/jvi.06277-11
[30]  van Kasteren PB, Bailey-Elkin BA, ames TW, Ninaber DK, Beugeling C, Khajehpour M, et al. (2013) Deubiquitinase function of arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells. Proc Natl Acad Sci USA 110: E838–E847. doi: 10.1073/pnas.1218464110
[31]  Zhang H, Guo X, Ge X, Chen Y, Sun Q, et al. (2009) Changes in the cellular proteins of pulmonary alveolar macrophage infected with porcine reproductive and respiratory syndrome virus by proteomics analysis. J Proteome Res 8: 3091–3097. doi: 10.1021/pr900002f
[32]  Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, et al. (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674–3676. doi: 10.1093/bioinformatics/bti610
[33]  Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28: 27–30. doi: 10.1093/nar/28.1.27
[34]  Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. (2003) Cytoscape: a software environment for integrated models for biomolecular interaction networks. Genome Res 13: 2498–2504. doi: 10.1101/gr.1239303
[35]  Fang Y, Rowland RR, Roof M, Lunney JK, Christopher-Hennings J, et al. (2006) A full-length cDNA infectious clone of North American type 1 porcine reproductive nsp2 region. J Virol 80: 11447–11455. doi: 10.1128/jvi.01032-06
[36]  Yan Y, Guo X, Ge X, Chen Y, Cha Z, et al. (2007) Monoclonal antibody and porcine antisera recognized B-cell epitopes of Nsp2 protein of a Chinese strain of porcine reproductive and respiratory syndrome virus. Virus Res 126: 207–215. doi: 10.1016/j.virusres.2007.03.002
[37]  Snijder EJ, Meulenberg JJ (1998) The molecular biology of arteriviruses. J Gen Virol 79: 961–79.
[38]  Kirchhoff F (2010) Immune evasion and counteraction of restriction factors by HIV-1 and other primate lentiviruses. Cell Host Microbe 8: 55–67. doi: 10.1016/j.chom.2010.06.004
[39]  Lamkanfi M, Dixit VM (2010) Manipulation of host cell death pathways during microbial infections. Cell Host Microbe 8: 44–54. doi: 10.1016/j.chom.2010.06.007
[40]  Watanabe T, Watanabe S, Kawaoka Y (2010) Cellular networks involved in the influenza virus life cycle. Cell Host Microbe 7: 427–439. doi: 10.1016/j.chom.2010.05.008
[41]  Yoo D, Song C, Sun Y, Du Y, Kim O, et al. (2010) Modulation of host cell responses and evasion strategies for porcine reproductive and respiratory syndrome virus. Virus Res 154: 48–60. doi: 10.1016/j.virusres.2010.07.019
[42]  Wassenaar AL, Spaan WJ, Gorbalenya AE, Snijder EJ (1997) Alternative proteolytic processing of the arterivirus replicase ORF1a polyprotein: evidence that NSP2 acts as a cofactor for the NSP4 serine protease. J Virol 71: 9313–9322.
[43]  Posthuma CC, Pedersen KW, Lu Z, Joosten RG, Roos N, et al. (2008) Formation of the arterivirus replication/transcription complex: a key role for nonstructural protein 3 in the remodeling of intracellular membranes. J Virol 82: 4480–4491. doi: 10.1128/jvi.02756-07
[44]  Beura LK, Dinh PX, Osorio FA, Pattnaik AK (2011) Cellular poly(C) binding proteins 1 and 2 interact with porcine reproductive and respiratory syndrome virus nonstructural protein 1 and support viral replication. J Virol 85: 12939–12949. doi: 10.1128/jvi.05177-11
[45]  Jourdan SS, Osorio F, Hiscox JA (2012) An interactome map of the nucleocapsid protein from a highly pathogenic North American porcine reproductive and respiratory syndrome virus strain generated using SILAC-based quantitative proteomics. Proteomics 12: 1015–1023. doi: 10.1002/pmic.201100469
[46]  Gorbalenya AE, Enjuanes L, Ziebuhr J, Snijder EJ (2006) Nidovirales: Evolving the largest RNA virus genome. Virus Res 117: 17–37. doi: 10.1016/j.virusres.2006.01.017
[47]  Snijder EJ, Kikkert M, Fang Y (2013) Arterivirus molecular biology and pathogenesis. J Gen Virol 94: 2141–2163. doi: 10.1099/vir.0.056341-0
[48]  Molitor TW, Bautista EM, Choi CS (1997) Immunity to PRRSV: double-edged sword. Vet Microbiol 55: 265–276. doi: 10.1016/s0378-1135(96)01327-2
[49]  Wang X, Eaton M, Mayer M, Li H, He D, et al. (2007) Porcine reproductive and respiratory syndrome virus productively infects monocyte-derived dendritic cells and compromises their antigen-presenting ability. Arch Virol 152: 289–303. doi: 10.1007/s00705-006-0857-1
[50]  Gómez-Laguna J, Salguero FJ, Fernández de Marco M, Barranco I, Rodríguez-Gómez IM, et al. (2013) Type 2 Porcine Reproductive and Respiratory Syndrome Virus infection mediated apoptosis in B- and T-cell areas in lymphoid organs of experimentally infected pigs. Transbound Emerg Dis 60: 273–278. doi: 10.1111/j.1865-1682.2012.01338.x
[51]  Cao J, Li B, Fang L, Chen H, Xiao S (2012) Pathogenesis of nonsuppurative encephalitis caused by highly pathogenic Porcine reproductive and respiratory syndrome virus. J Vet Diagn Invest 24: 767–771. doi: 10.1177/1040638712445764
[52]  Thanawongnuwech R, Halbur PG, Andrews JJ (1997) Immunohistochemical detection of porcine reproductive and respiratory syndrome virus antigen in neurovascular lesions. J Vet Diagn Invest 9: 334–337. doi: 10.1177/104063879700900323
[53]  Li L, Zhao Q, Ge X, Teng K, Kuang Y, et al. (2012) Chinese highly pathogenic porcine reproductive and respiratory syndrome virus exhibits more extensive tissue tropism for pigs. Virol J 9: 203. doi: 10.1186/1743-422x-9-203
[54]  Halbur PG, Paul PS, Frey ML, Landgraf J, Eernisse K, et al. (1996) Comparison of the antigen distribution of two US porcine reproductive and respiratory syndrome virus isolates with that of the Lelystad virus. Vet Pathol 33: 159–170. doi: 10.1177/030098589603300205
[55]  Rossow KD, Collins JE, Goyal SM, Nelson EA (1995) Pathogenesis of porcine reproductive and respiratory syndrome virus infection in gnotobiotic pigs. Vet Pathol 32: 361–373. doi: 10.1177/030098589503200404
[56]  Banerji J, Sands J, Strominger JL, Spies TA (1990) A gene pair from the human major histocompatibility complex encodes large proline-rich proteins with multiple repeated motifs and a single ubiquitin-like domain. Proc Natl Acad Sci USA 87: 2374–2378. doi: 10.1073/pnas.87.6.2374
[57]  Lee JG, Ye Y (2013) Bag6/Bat3/Scythe: A novel chaperone activity with diverse regulatory functions in protein biogenesis and degradation. BioEssays 35: 377–385. doi: 10.1002/bies.201200159
[58]  Kutay U, Hartmann E, Rapoport TA (1993) A class of membrane proteins with a C-terminal anchor. Trends Cell Biol 3: 72–75. doi: 10.1016/0962-8924(93)90066-a
[59]  Leznicki P, Clancy A, Schwappach B, High S (2010) Bat3 promotes the membrane integration of tail-anchored proteins. J Cell Sci 123: 2170–2178. doi: 10.1242/jcs.066738
[60]  Mariappan M, Li X, Stefanovic S, Sharma A, Mateja A, et al. (2010) A ribosome-associating factor chaperones tail-anchored membrane proteins. Nature 466: 1120–1124. doi: 10.1038/nature09296
[61]  Leznicki P, High S (2012) SGTA antagonizes BAG6-mediated protein triage. Proc Natl Acad Sci USA 109: 19214–19219. doi: 10.1073/pnas.1209997109
[62]  Minami R, Hayakawa A, Kagawa H, Yanagi Y, Yokosawa H, et al. (2010) BAG-6 is essential for selective elimination of defective proteasomal substrates. J Cell Biol 190: 637–650. doi: 10.1083/jcb.200908092
[63]  Thress K, Evans EK, Kornbluth S (1999) Reaper-induced dissociation of a Scythe-sequestered cytochrome c-releasing activity. EMBO J 18: 5486–5493. doi: 10.1093/emboj/18.20.5486
[64]  Thress K, Henzel W, Shillinglaw W, Kornbluth S (1998) Scythe: a novel reaper-binding apoptotic regulator. EMBO J 17: 6135–6143. doi: 10.1093/emboj/17.21.6135
[65]  Chang AC, Zsak L, Feng Y, Mosseri R, Lu Q, et al. (2012) Phenotype-based identification of host genes required for replication of African swine fever virus. J Virol 80: 8705–8717. doi: 10.1128/jvi.00475-06
[66]  Candé C, Cohen I, Daugas E, Ravagnan L, Larochette N, et al. (2002) Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochimie 84: 215–222. doi: 10.1016/s0300-9084(02)01374-3
[67]  Tanaka S, Takehashi M, Iida S, Kitajima T, Kamanaka Y, et al. (2005) Mitochondrial impairment induced by poly(ADP-ribose) polymerase-1 activation in cortical neurons after oxygen and glucose deprivation. J Neurochem 95: 179–190. doi: 10.1111/j.1471-4159.2005.03353.x
[68]  Yu SW (2002) Mediation of poly(ADP-Ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297: 259–263. doi: 10.1126/science.1072221
[69]  Susin S, Lorenzo HK, Zamzami N, Marzo I, Snow BE, et al. (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397: 441–446.
[70]  Costers S, Lefebvre DJ, Delputte PL, Nauwynck HJ (2008) Porcine reproductive and respiratory syndrome virus modulates apoptosis during replication in alveolar macrophages. Arch Virol 153: 1453–1465. doi: 10.1007/s00705-008-0135-5
[71]  Lee SM, Kleiboeker SB (2007) Porcine reproductive and respiratory syndrome virus induces apoptosis through a mitochondria-mediated pathway. Virology 365: 419–434. doi: 10.1016/j.virol.2007.04.001
[72]  Miller LC, Fox JM (2004) Apoptosis and porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol 102: 131–142. doi: 10.1016/j.vetimm.2004.09.004
[73]  Ma Z, Wang Y, Zhao H, Xu AT, Wang Y, et al. (2013) Porcine reproductive and respiratory syndrome virus nonstructural protein 4 induces apoptosis dependent on its 3C-like serine protease activity. PLoS ONE 8: e69387. doi: 10.1371/journal.pone.0069387
[74]  Preta G, Fadeel B (2012) AIF and Scythe (Bat3) regulate phosphatidylserine exposure and macrophage clearance of cells undergoing Fas (APO-1)-mediated apoptosis. PLoS ONE 7: e47328. doi: 10.1371/journal.pone.0047328
[75]  Desmots F, Russell HR, Michel D, McKinnon PJ (2007) Scythe regulates apoptosis-inducing factor stability during endoplasmic reticulum stress-induced apoptosis. J Biol Chem 283: 3264–3271. doi: 10.1074/jbc.m706419200

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133