[1] | Revollo JR, Cidlowski JA (2009) Mechanisms generating diversity in glucocorticoid receptor signaling. Ann N Y Acad Sci 1179: 167–178 doi:10.1111/j.1749-6632.2009.04986.x.
|
[2] | De Kloet ER, Jo?ls M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6: 463–475 doi:10.1038/nrn1683.
|
[3] | Johnson LR, Farb C, Morrison JH, McEwen BS, LeDoux JE (2005) Localization of glucocorticoid receptors at postsynaptic membranes in the lateral amygdala. Neuroscience 136: 289–299 doi:10.1016/j.neuroscience.2005.06.050.
|
[4] | Sah R, Pritchard LM, Richtand NM, Ahlbrand R, Eaton K, et al. (2005) Expression of the glucocorticoid-induced receptor mRNA in rat brain. Neuroscience 133: 281–292 doi:10.1016/j.neuroscience.2005.01.066.
|
[5] | Cintra A, Zoli M, Rosén L, Agnati LF, Okret S, et al. (1994) Mapping and computer assisted morphometry and microdensitometry of glucocorticoid receptor immunoreactive neurons and glial cells in the rat central nervous system. Neuroscience 62: 843–897. doi: 10.1016/0306-4522(94)90481-2
|
[6] | Kerr DS, Campbell LW, Thibault O, Landfield PW (1992) Hippocampal glucocorticoid receptor activation enhances voltage-dependent Ca2+ conductances: relevance to brain aging. Proc Natl Acad Sci USA 89: 8527–8531. doi: 10.1073/pnas.89.18.8527
|
[7] | Karst H, Karten YJ, Reichardt HM, de Kloet ER, Schütz G, et al. (2000) Corticosteroid actions in hippocampus require DNA binding of glucocorticoid receptor homodimers. Nat Neurosci 3: 977–978 doi:10.1038/79910.
|
[8] | Jo?ls M, Velzing E, Nair S, Verkuyl JM, Karst H (2003) Acute stress increases calcium current amplitude in rat hippocampus: temporal changes in physiology and gene expression. Eur J Neurosci 18: 1315–1324. doi: 10.1046/j.1460-9568.2003.02845.x
|
[9] | Chameau P, Qin Y, Spijker S, Smit AB, Smit G, et al. (2007) Glucocorticoids specifically enhance L-type calcium current amplitude and affect calcium channel subunit expression in the mouse hippocampus. J Neurophysiol 97: 5–14 doi:10.1152/jn.00821.2006.
|
[10] | Faber ESL, Sah P (2005) Independent roles of calcium and voltage-dependent potassium currents in controlling spike frequency adaptation in lateral amygdala pyramidal neurons. Eur J Neurosci 22: 1627–1635 doi:10.1111/j.1460-9568.2005.04357.x.
|
[11] | Jo?ls M, de Kloet ER (1989) Effects of glucocorticoids and norepinephrine on the excitability in the hippocampus. Science 245: 1502–1505. doi: 10.1126/science.2781292
|
[12] | Kerr DS, Campbell LW, Hao SY, Landfield PW (1989) Corticosteroid modulation of hippocampal potentials: increased effect with aging. Science 245: 1505–1509. doi: 10.1126/science.2781293
|
[13] | Liebmann L, Karst H, Sidiropoulou K, van Gemert N, Meijer OC, et al. (2008) Differential effects of corticosterone on the slow afterhyperpolarization in the basolateral amygdala and CA1 region: possible role of calcium channel subunits. J Neurophysiol 99: 958–968 doi:10.1152/jn.01137.2007.
|
[14] | Fukushima F, Nakao K, Shinoe T, Fukaya M, Muramatsu S-I, et al. (2009) Ablation of NMDA receptors enhances the excitability of hippocampal CA3 neurons. PLoS ONE 4: e3993 doi:10.1371/journal.pone.0003993.
|
[15] | Thomas EA, Bornstein JC (2003) Inhibitory cotransmission or after-hyperpolarizing potentials can regulate firing in recurrent networks with excitatory metabotropic transmission. Neuroscience 120: 333–351. doi: 10.1016/s0306-4522(03)00039-3
|
[16] | Pettorossi VE, Dieni CV, Scarduzio M, Grassi S (2011) Long-term potentiation of synaptic response and intrinsic excitability in neurons of the rat medial vestibular nuclei. Neuroscience 187: 1–14 doi:10.1016/j.neuroscience.2011.04.040.
|
[17] | Jo?ls M, Sarabdjitsingh RA, Karst H (2012) Unraveling the time domains of corticosteroid hormone influences on brain activity: rapid, slow, and chronic modes. Pharmacol Rev 64: 901–938 doi:10.1124/pr.112.005892.
|
[18] | Duvarci S, Paré D (2007) Glucocorticoids enhance the excitability of principal basolateral amygdala neurons. J Neurosci 27: 4482–4491 doi:10.1523/JNEUROSCI.0680-07.2007.
|
[19] | Roozendaal B, McEwen BS, Chattarji S (2009) Stress, memory and the amygdala. Nat Rev Neurosci 10: 423–433 doi:10.1038/nrn2651.
|
[20] | McEwen BS, Magarinos AM (1997) Stress effects on morphology and function of the hippocampus. Ann N Y Acad Sci 821: 271–284. doi: 10.1111/j.1749-6632.1997.tb48286.x
|
[21] | Cook SC, Wellman CL (2004) Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J Neurobiol 60: 236–248 doi:10.1002/neu.20025.
|
[22] | Czéh B, Perez-Cruz C, Fuchs E, Flügge G (2008) Chronic stress-induced cellular changes in the medial prefrontal cortex and their potential clinical implications: does hemisphere location matter? Behav Brain Res 190: 1–13 doi:10.1016/j.bbr.2008.02.031.
|
[23] | Shansky RM, Morrison JH (2009) Stress-induced dendritic remodeling in the medial prefrontal cortex: effects of circuit, hormones and rest. Brain Res 1293: 108–113 doi:10.1016/j.brainres.2009.03.062.
|
[24] | Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S (2002) Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 22: 6810–6818 doi:20026655.
|
[25] | Liston C, Miller MM, Goldwater DS, Radley JJ, Rocher AB, et al. (2006) Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J Neurosci 26: 7870–7874 doi:10.1523/JNEUROSCI.1184-06.2006.
|
[26] | Kritzer MF, Goldman-Rakic PS (1995) Intrinsic circuit organization of the major layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey. J Comp Neurol 359: 131–143 doi:10.1002/cne.903590109.
|
[27] | Halberg F, Albrecht PG, Bittner JJ (1959) Corticosterone rhythm of mouse adrenal in relation to serum corticosterone and sampling. Am J Physiol 197: 1083–1085.
|
[28] | Jacobsen KR, Kalliokoski O, Teilmann AC, Hau J, Abelson KSP (2012) The effect of isoflurane anaesthesia and vasectomy on circulating corticosterone and ACTH in BALB/c mice. Gen Comp Endocrinol 179: 406–413 doi:10.1016/j.ygcen.2012.09.012.
|
[29] | Zardooz H, Rostamkhani F, Zaringhalam J, Faraji Shahrivar F (2010) Plasma corticosterone, insulin and glucose changes induced by brief exposure to isoflurane, diethyl ether and CO2 in male rats. Physiol Res 59: 973–978.
|
[30] | Storm JF (1987) Intracellular injection of a Ca2+ chelator inhibits spike repolarization in hippocampal neurons. Brain Res 435: 387–392. doi: 10.1016/0006-8993(87)91631-3
|
[31] | Velumian AA, Carlen PL (1999) Differential control of three after-hyperpolarizations in rat hippocampal neurones by intracellular calcium buffering. J Physiol (Lond) 517 (Pt 1): 201–216. doi: 10.1111/j.1469-7793.1999.0201z.x
|
[32] | Lancaster B, Batchelor AM (2000) Novel action of BAPTA series chelators on intrinsic K+ currents in rat hippocampal neurones. J Physiol (Lond) 522 Pt 2: 231–246. doi: 10.1111/j.1469-7793.2000.t01-1-00231.x
|
[33] | Cash S, Yuste R (1999) Linear summation of excitatory inputs by CA1 pyramidal neurons. Neuron 22: 383–394. doi: 10.1016/s0896-6273(00)81098-3
|
[34] | Badanich KA, Mulholland PJ, Beckley JT, Trantham-Davidson H, Woodward JJ (2013) Ethanol reduces neuronal excitability of lateral orbitofrontal cortex neurons via a glycine receptor dependent mechanism. Neuropsychopharmacology 38: 1176–1188 doi:10.1038/npp.2013.12.
|
[35] | Zhang Z, Cordeiro Matos S, Jego S, Adamantidis A, Séguéla P (2013) Norepinephrine drives persistent activity in prefrontal cortex via synergistic α1 and α2 adrenoceptors. PLoS ONE 8: e66122 doi:10.1371/journal.pone.0066122.
|
[36] | Khawaja FA, Alonso AA, Bourque CW (2007) Ca(2+)-dependent K(+) currents and spike-frequency adaptation in medial entorhinal cortex layer II stellate cells. Hippocampus 17: 1143–1148 doi:10.1002/hipo.20365.
|
[37] | Womble MD, Moises HC (1993) Muscarinic modulation of conductances underlying the afterhyperpolarization in neurons of the rat basolateral amygdala. Brain Res 621: 87–96. doi: 10.1016/0006-8993(93)90301-3
|
[38] | Gerlach AC, Maylie J, Adelman JP (2004) Activation kinetics of the slow afterhyperpolarization in hippocampal CA1 neurons. Pflugers Arch 448: 187–196 doi:10.1007/s00424-003-1237-2.
|
[39] | Stocker M, Krause M, Pedarzani P (1999) An apamin-sensitive Ca2+-activated K+ current in hippocampal pyramidal neurons. Proc Natl Acad Sci USA 96: 4662–4667. doi: 10.1073/pnas.96.8.4662
|
[40] | Madison DV, Nicoll RA (1982) Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus. Nature 299: 636–638. doi: 10.1038/299636a0
|
[41] | R Development Core Team (2013) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available: http://www.R-project.org/. Accessed 15 May 2014.
|
[42] | Bates DM, Maechler M, Bolker B, Walker S (2013) lme4: Linear-mixed Effects Models Using S4 Classes. Available: http://CRAN.R-project.org/package=lme4. Accessed 15 May 2014.
|
[43] | Winter B (2013) Linear models and linear mixed effects models in R with linguistic applications. Available: http://arxiv.org/pdf/1308.5499.pdf. Accessed 15 May 2014.
|
[44] | Rubin D (1987) Multiple Imputation for Nonresponse in Surveys. New York: John Wiley.
|
[45] | Barzi F, Woodward M (2004) Imputations of missing values in practice: results from imputations of serum cholesterol in 28 cohort studies. Am J Epidemiol 160: 34–45 doi:10.1093/aje/kwh175.
|
[46] | King G, Honaker J, Joseph A, Scheve K (2001) Analyzing Incomplete Political Science Data: An Alternative Algorithm for Multiple Imputation. American Political Science Review 95: 49–69.
|
[47] | Blackwell M, Honaker J, King G (2012) Multiple Overimputation: A Unified Approach to Measurement Error and Missing Data. Available: http://gking.harvard.edu/files/gking/fil?es/measure.pdf. Accessed 15 May 2014.
|
[48] | Bodner T (2008) What Improves with Increased Missing Data Imputations? Structural Equation Modeling: A Multidisciplinary Journal 15: 651–675. doi: 10.1080/10705510802339072
|
[49] | Cook DR (1977) Detection of Influential Observation in Linear Regression. Technometrics 19: 15–18. doi: 10.2307/1268249
|
[50] | Nieuwenhuis R, te Grotenhuis M, Pelzer B (2012) influence.ME: Tools for Detecting Influential Data in Mixed Effects Models. Available: http://www.rensenieuwenhuis.nl/r-project?/influenceme/. Accessed 2014 May 15.
|
[51] | Maggio N, Segal M (2009) Differential modulation of long-term depression by acute stress in the rat dorsal and ventral hippocampus. J Neurosci 29: 8633–8638 doi:10.1523/JNEUROSCI.1901-09.2009.
|
[52] | Maggio N, Segal M (2009) Differential corticosteroid modulation of inhibitory synaptic currents in the dorsal and ventral hippocampus. J Neurosci 29: 2857–2866 doi:10.1523/JNEUROSCI.4399-08.2009.
|
[53] | Hawley DF, Morch K, Christie BR, Leasure JL (2012) Differential response of hippocampal subregions to stress and learning. PLoS ONE 7: e53126 doi:10.1371/journal.pone.0053126.
|
[54] | R Dorey, Piérard C, Chauveau F, David V, Béracochéa D (2012) Stress-induced memory retrieval impairments: different time-course involvement of corticosterone and glucocorticoid receptors in dorsal and ventral hippocampus. Neuropsychopharmacology 37: 2870–2880 doi:10.1038/npp.2012.170.
|
[55] | Madison DV, Nicoll RA (1984) Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro. J Physiol (Lond) 354: 319–331.
|
[56] | Lancaster B, Nicoll RA (1987) Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones. J Physiol (Lond) 389: 187–203.
|
[57] | Storm JF (1990) Potassium currents in hippocampal pyramidal cells. Prog Brain Res 83: 161–187. doi: 10.1016/s0079-6123(08)61248-0
|
[58] | Schwabe L, Tegenthoff M, H?ffken O, Wolf OT (2012) Simultaneous glucocorticoid and noradrenergic activity disrupts the neural basis of goal-directed action in the human brain. J Neurosci 32: 10146–10155 doi:10.1523/JNEUROSCI.1304-12.2012.
|
[59] | Koot S, Baars A, Hesseling P, van den Bos R, Jo?ls M (2013) Time-dependent effects of corticosterone on reward-based decision-making in a rodent model of the Iowa Gambling Task. Neuropharmacology 70: 306–315 doi:10.1016/j.neuropharm.2013.02.008.
|
[60] | Liston C, Miller MM, Goldwater DS, Radley JJ, Rocher AB, et al. (2006) Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J Neurosci 26: 7870–7874 doi:10.1523/JNEUROSCI.1184-06.2006.
|
[61] | Dias-Ferreira E, Sousa JC, Melo I, Morgado P, Mesquita AR, et al. (2009) Chronic stress causes frontostriatal reorganization and affects decision-making. Science 325: 621–625 doi:10.1126/science.1171203.
|
[62] | Cerqueira JJ, Pêgo JM, Taipa R, Bessa JM, Almeida OFX, et al. (2005) Morphological correlates of corticosteroid-induced changes in prefrontal cortex-dependent behaviors. J Neurosci 25: 7792–7800 doi:10.1523/JNEUROSCI.1598-05.2005.
|
[63] | Radley JJ, Rocher AB, Miller M, Janssen WGM, Liston C, et al. (2006) Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb Cortex 16: 313–320 doi:10.1093/cercor/bhi104.
|
[64] | Lehmann ML, Herkenham M (2011) Environmental enrichment confers stress resiliency to social defeat through an infralimbic cortex-dependent neuroanatomical pathway. J Neurosci 31: 6159–6173 doi:10.1523/JNEUROSCI.0577-11.2011.
|
[65] | McKlveen JM, Myers B, Flak JN, Bundzikova J, Solomon MB, et al.. (2013) Role of Prefrontal Cortex Glucocorticoid Receptors in Stress and Emotion. Biol Psychiatry. doi:10.1016/j.biopsych.2013.03.024.
|
[66] | Wellman CL (2001) Dendritic reorganization in pyramidal neurons in medial prefrontal cortex after chronic corticosterone administration. J Neurobiol 49: 245–253. doi: 10.1002/neu.1079
|
[67] | Reul JM, de Kloet ER (1986) Anatomical resolution of two types of corticosterone receptor sites in rat brain with in vitro autoradiography and computerized image analysis. J Steroid Biochem 24: 269–272. doi: 10.1016/0022-4731(86)90063-4
|
[68] | Furay AR, Bruestle AE, Herman JP (2008) The role of the forebrain glucocorticoid receptor in acute and chronic stress. Endocrinology 149: 5482–5490 doi:10.1210/en.2008-0642.
|
[69] | Hoover WB, Vertes RP (2007) Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 212: 149–179 doi:10.1007/s00429-007-0150-4.
|
[70] | Goodfellow NM, Benekareddy M, Vaidya VA, Lambe EK (2009) Layer II/III of the prefrontal cortex: Inhibition by the serotonin 5-HT1A receptor in development and stress. J Neurosci 29: 10094–10103 doi:10.1523/JNEUROSCI.1960-09.2009.
|
[71] | Lancaster B, Nicoll RA, Perkel DJ (1991) Calcium activates two types of potassium channels in rat hippocampal neurons in culture. J Neurosci 11: 23–30.
|
[72] | Zhang L, McBain CJ (1995) Potassium conductances underlying repolarization and after-hyperpolarization in rat CA1 hippocampal interneurones. J Physiol (Lond) 488 (Pt 3): 661–672.
|
[73] | Azouz R, Jensen MS, Yaari Y (1996) Ionic basis of spike after-depolarization and burst generation in adult rat hippocampal CA1 pyramidal cells. J Physiol (Lond) 492 (Pt 1): 211–223.
|
[74] | Shah M, Haylett DG (2000) Ca(2+) channels involved in the generation of the slow afterhyperpolarization in cultured rat hippocampal pyramidal neurons. J Neurophysiol 83: 2554–2561.
|
[75] | Jones RS, Heinemann U (1988) Verapamil blocks the afterhyperpolarization but not the spike frequency accommodation of rat CA1 pyramidal cells in vitro. Brain Res 462: 367–371. doi: 10.1016/0006-8993(88)90567-7
|
[76] | Magistretti J, Mantegazza M, Guatteo E, Wanke E (1996) Action potentials recorded with patch-clamp amplifiers: are they genuine? Trends Neurosci 19: 530–534. doi: 10.1016/s0166-2236(96)40004-2
|
[77] | Perez-Cruz C, Simon M, Flügge G, Fuchs E, Czéh B (2009) Diurnal rhythm and stress regulate dendritic architecture and spine density of pyramidal neurons in the rat infralimbic cortex. Behav Brain Res 205: 406–413 doi:10.1016/j.bbr.2009.07.021.
|
[78] | Wilber AA, Walker AG, Southwood CJ, Farrell MR, Lin GL, et al. (2011) Chronic stress alters neural activity in medial prefrontal cortex during retrieval of extinction. Neuroscience 174: 115–131 doi:10.1016/j.neuroscience.2010.10.070.
|
[79] | Ksi??ek A, Ladno W, Szulczyk B, Grzelka K, Szulczyk P (2013) Properties of BK-type Ca(+) (+)-dependent K(+) channel currents in medial prefrontal cortex pyramidal neurons in rats of different ages. Front Cell Neurosci 7: 185 doi:10.3389/fncel.2013.00185.
|
[80] | Yuen EY, Liu W, Karatsoreos IN, Ren Y, Feng J, et al. (2011) Mechanisms for acute stress-induced enhancement of glutamatergic transmission and working memory. Mol Psychiatry 16: 156–170 doi:10.1038/mp.2010.50.
|
[81] | Liu W, Yuen EY, Yan Z (2010) The stress hormone corticosterone increases synaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazo?lepropionicacid (AMPA) receptors via serum- and glucocorticoid-inducible kinase (SGK) regulation of the GDI-Rab4 complex. J Biol Chem 285: 6101–6108 doi:10.1074/jbc.M109.050229.
|
[82] | Karst H, Berger S, Turiault M, Tronche F, Schütz G, et al. (2005) Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone. Proc Natl Acad Sci USA 102: 19204–19207 doi:10.1073/pnas.0507572102.
|
[83] | Groc L, Choquet D, Chaouloff F (2008) The stress hormone corticosterone conditions AMPAR surface trafficking and synaptic potentiation. Nat Neurosci 11: 868–870 doi:10.1038/nn.2150.
|
[84] | Martin S, Henley JM, Holman D, Zhou M, Wiegert O, et al. (2009) Corticosterone alters AMPAR mobility and facilitates bidirectional synaptic plasticity. PLoS ONE 4: e4714 doi:10.1371/journal.pone.0004714.
|
[85] | Kitchener P, Di Blasi F, Borrelli E, Piazza PV (2004) Differences between brain structures in nuclear translocation and DNA binding of the glucocorticoid receptor during stress and the circadian cycle. Eur J Neurosci 19: 1837–1846 doi:10.1111/j.1460-9568.2004.03267.x.
|
[86] | Van Gemert NG, Carvalho DMM, Karst H, van der Laan S, Zhang M, et al. (2009) Dissociation between rat hippocampal CA1 and dentate gyrus cells in their response to corticosterone: effects on calcium channel protein and current. Endocrinology 150: 4615–4624 doi:10.1210/en.2009-0525.
|
[87] | Liu R-J, Aghajanian GK (2008) Stress blunts serotonin- and hypocretin-evoked EPSCs in prefrontal cortex: role of corticosterone-mediated apical dendritic atrophy. Proc Natl Acad Sci USA 105: 359–364 doi:10.1073/pnas.0706679105.
|
[88] | Eagle DM, Baunez C (2010) Is there an inhibitory-response-control system in the rat? Evidence from anatomical and pharmacological studies of behavioral inhibition. Neurosci Biobehav Rev 34: 50–72 doi:10.1016/j.neubiorev.2009.07.003.
|
[89] | Maggio N, Segal M (2007) Striking variations in corticosteroid modulation of long-term potentiation along the septotemporal axis of the hippocampus. J Neurosci 27: 5757–5765 doi:10.1523/JNEUROSCI.0155-07.2007.
|