Background and Purpose Tract-based spatial statistics (TBSS) has been used to assess the integrity of the visual pathway in glaucoma patients. TBSS uses the subjects’ FA data to create a mean FA skeleton of white matter tracts before running voxel-wise cross-subject statistics. We compared four different approaches of registration of FA maps to create the skeleton and evaluated alignment and subsequently the impact of the chosen registration on voxel-wise statistics. Material and Methods Our study comprised 69 subjects, i.e. 46 patients with primary open angle glaucoma (POAG) and a healthy, age-matched control group of 23 subjects. Mean FA skeletons were created using the following registration approaches: registration to a standard template (T), registration to the group mean (GM), registration to a group-wise atlas (GW) and registration to the most typical subject (N). Subsequently, maps of standard deviation of the 4D images were created to assess the alignment. Voxel-wise statistics for each registration approach were performed. Results We found distinct differences in voxel-wise statistics depending on the chosen registration approach. Best alignment results were achieved by registration to a study specific template, i.e. to the group mean (GM) or to a group-wise atlas (GW). Overall alignment did not differ between these two approaches. However, voxel-wise statistics showed clusters of significantly decreased FA values in the T and GM approach, which were not significant after GW registration. These voxels of significantly decreased FA values after T and GM registration did not represent white matter tracts and correlated with higher standard deviation in FA maps across subjects, thus implying registration errors, especially in the optic radiation. Conclusion Registration to a study-specific template, i.e. to the group mean or a group-wise atlas seems to be the method of choice in TBSS-analysis of glaucoma patients as it shows better alignment of the optic radiation and helps to rule out registration errors due to misalignment.
References
[1]
Gupta N, Ang LC, Noel de Tilly L, Bidaisee L, Yucel YH (2006) Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br J Ophthalmol 90: 674–678. doi: 10.1136/bjo.2005.086769
[2]
Hernowo AT, Boucard CC, Jansonius NM, Hooymans JM, Cornelissen FW (2011) Automated morphometry of the visual pathway in primary open-angle glaucoma. Invest Ophthalmol Vis Sci 52: 2758–2766. doi: 10.1167/iovs.10-5682
[3]
Li C, Cai P, Shi L, Lin Y, Zhang J, et al. (2012) Voxel-based morphometry of the visual-related cortex in primary open angle glaucoma. Curr Eye Res 37: 794–802. doi: 10.3109/02713683.2012.683506
[4]
Engelhorn T, Michelson G, Waerntges S, Otto M, El-Rafei A, et al. (2012) Changes of radial diffusivity and fractional anisotropy in the optic nerve and optic radiation of glaucoma patients. ScientificWorldJournal 2012: 849632. doi: 10.1100/2012/849632
[5]
Chen Z, Lin F, Wang J, Li Z, Dai H, et al. (2013) Diffusion tensor magnetic resonance imaging reveals visual pathway damage that correlates with clinical severity in glaucoma. Clin Experiment Ophthalmol 41: 43–49. doi: 10.1111/j.1442-9071.2012.02832.x
[6]
Lu P, Shi L, Du H, Xie B, Li C, et al. (2013) Reduced white matter integrity in primary open-angle glaucoma: a DTI study using tract-based spatial statistics. J Neuroradiol 40: 89–93. doi: 10.1016/j.neurad.2012.04.001
[7]
Zikou AK, Kitsos G, Tzarouchi LC, Astrakas L, Alexiou GA, et al. (2012) Voxel-based morphometry and diffusion tensor imaging of the optic pathway in primary open-angle glaucoma: a preliminary study. AJNR Am J Neuroradiol 33: 128–134. doi: 10.3174/ajnr.a2714
[8]
Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, et al. (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31: 1487–1505. doi: 10.1016/j.neuroimage.2006.02.024
[9]
Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, et al. (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23 Suppl 1S208–219. doi: 10.1016/j.neuroimage.2004.07.051
[10]
Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17: 143–155. doi: 10.1002/hbm.10062
[11]
Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) FSL. Neuroimage 62: 782–790. doi: 10.1016/j.neuroimage.2011.09.015
[12]
Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M, et al. (2007) Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 36: 630–644. doi: 10.1016/j.neuroimage.2007.02.049
[13]
Hua K, Zhang J, Wakana S, Jiang H, Li X, et al. (2008) Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage 39: 336–347. doi: 10.1016/j.neuroimage.2007.07.053
[14]
Douaud G, Jbabdi S, Behrens TE, Menke RA, Gass A, et al. (2011) DTI measures in crossing-fibre areas: increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer’s disease. Neuroimage 55: 880–890. doi: 10.1016/j.neuroimage.2010.12.008
[15]
Keihaninejad S, Ryan NS, Malone IB, Modat M, Cash D, et al. (2012) The importance of group-wise registration in tract based spatial statistics study of neurodegeneration: a simulation study in Alzheimer’s disease. PLoS One 7: e45996. doi: 10.1371/journal.pone.0045996
[16]
Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 44: 83–98. doi: 10.1016/j.neuroimage.2008.03.061
[17]
Chen WW, Wang N, Cai S, Fang Z, Yu M, et al. (2013) Structural brain abnormalities in patients with primary open-angle glaucoma: a study with 3T MR imaging. Invest Ophthalmol Vis Sci 54: 545–554. doi: 10.1167/iovs.12-9893
[18]
Yucel Y, Gupta N (2008) Glaucoma of the brain: a disease model for the study of transsynaptic neural degeneration. Prog Brain Res 173: 465–478. doi: 10.1016/s0079-6123(08)01132-1
[19]
Michelson G, Engelhorn T, Warntges S, El Rafei A, Hornegger J, et al. (2013) DTI parameters of axonal integrity and demyelination of the optic radiation correlate with glaucoma indices. Graefes Arch Clin Exp Ophthalmol 251: 243–253. doi: 10.1007/s00417-011-1887-2
[20]
Dai H, Yin D, Hu C, Morelli JN, Hu S, et al. (2013) Whole-brain voxel-based analysis of diffusion tensor MRI parameters in patients with primary open angle glaucoma and correlation with clinical glaucoma stage. Neuroradiology 55: 233–243. doi: 10.1007/s00234-012-1122-9