Background Lithospermic acid B (LAB), an active component isolated from Salvia miltiorrhiza radix, has been reported to have antioxidant effects. We examined the effects of LAB on the prevention of diabetic retinopathy in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, an animal model of type 2 diabetes. Methods and Findings LAB (10 or 20 mg/kg) or normal saline were given orally once daily to 24-week-old male OLETF rats for 52 weeks. At the end of treatment, fundoscopic findings, vascular endothelial growth factor (VEGF) expression in the eyeball, VEGF levels in the ocular fluid, and any structural abnormalities in the retina were assessed. Glucose metabolism, serum levels of high-sensitivity C-reactive protein (hsCRP), monocyte chemotactic protein-1 (MCP1), and tumor necrosis factor-alpha (TNFα) and urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels were also measured. Treatment with LAB prevented vascular leakage and basement membrane thickening in retinal capillaries in a dose-dependent manner. Insulin resistance and glucose intolerance were significantly improved by LAB treatment. The levels of serum hsCRP, MCP1, TNFα, and urinary 8-OHdG were lower in the LAB-treated OLETF rats than in the controls. Conclusions Treatment with LAB had a preventive effect on the development of diabetic retinopathy in this animal model, probably because of its antioxidative effects and anti-inflammatory effects.
References
[1]
Clark CM Jr, Lee DA (1995) Prevention and treatment of the complications of diabetes mellitus. N Engl J Med 332: 1210–7. doi: 10.1056/nejm199505043321807
[2]
Klein R, Klein BE, Moss SE (1989) The Wisconsin epidemiological study of diabetic retinopathy: a review. Diabetes Metab Rev 5: 559–70. doi: 10.1002/dmr.5610050703
[3]
Imesch PD, Bindley CD, Wallow IH (1997) Clinicopathologic correlation of intraretinal microvascular abnormalities. Retina 17: 321–9. doi: 10.1097/00006982-199707000-00008
[4]
Ishibashi T, Inomata H (1993) Ultrastructure of retinal vessels in diabetic patients. Br J Ophthalmol 77: 574–8. doi: 10.1136/bjo.77.9.574
[5]
The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med 329: 977–86. doi: 10.1056/nejm199309303291401
[6]
Porta M, Maldari P, Mazzaglia F (2011) New approaches to the treatment of diabetic retinopathy. Diabetes Obes Metab 13: 784–90. doi: 10.1111/j.1463-1326.2011.01415.x
[7]
Wong TY, Simo R, Mitchell P (2012) Fenofibrate – a potential systemic treatment for diabetic retinopathy? Am J Ophthalmol 154: 6–12. doi: 10.1016/j.ajo.2012.03.013
[8]
Michaelides M, Kaines A, Hamilton RD, Fraser-Bell S, Rajendram R, et al. (2010) A prospective randomized trial of intravitreal bevacizumab or laser therapy in the management of diabetic macular edema (BOLT study) 12-month data: report 2. Ophthalmology 117: 1078–86. doi: 10.1016/j.ophtha.2010.03.045
[9]
Massin P, Bandello F, Garweg JG, Hansen LL, Harding SP, et al. (2010) Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase II study. Diabetes Care 33: 2399–405. doi: 10.2337/dc10-0493
[10]
Cunningham ET Jr, Adamis AP, Altaweel M, Aiello LP, Bressler NM, et al. (2005) A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema. Ophthalmology 112: 1747–57. doi: 10.1016/j.ophtha.2005.06.007
[11]
Lu Y, Zhou N, Huang X, Cheng JW, Li FQ, et al. (2014) Effect of intravitreal injection of bevacizumab-chitosan nanoparticles on retina of diabetic rats. Int J Ophthalmol 7: 1–7.
[12]
Barouch FC, Miyamoto K, Allport JR, Fujita K, Bursell SE, et al. (2000) Integrin-mediated neutrophil adhesion and retinal leukostasis in diabetes. Invest Ophthalmol Vis Sci 41: 1153–8.
[13]
Miyamoto K, Khosrof S, Bursell SE, Rohan R, Murata T, et al. (1999) Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. Proc Natl Acad Sci U S A 96: 10836–41. doi: 10.1073/pnas.96.19.10836
[14]
Woo SJ, Ahn SJ, Ahn J, Park KH, Lee K (2011) Elevated systemic neutrophil count in diabetic retinopathy and diabetes: a hospital-based cross-sectional study of 30,793 Korean subjects. Invest Ophthalmol Vis Sci 52: 7697–703. doi: 10.1167/iovs.11-7784
[15]
Aiello LP, Pierce EA, Foley ED, Takagi H, Chen H, et al. (1995) Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci U S A 92: 10457–61. doi: 10.1073/pnas.92.23.10457
[16]
Tanaka Y, Katoh S, Hori S, Miura M, Yamashita H (1997) Vascular endothelial growth factor in diabetic retinopathy. Lancet 349: 1520. doi: 10.1016/s0140-6736(05)62099-5
[17]
Rask-Madsen C, King GL (2013) Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab 17: 20–33. doi: 10.1016/j.cmet.2012.11.012
[18]
Kaliora AC, Dedoussis GV, Schmidt H (2006) Dietary antioxidants in preventing atherogenesis. Atherosclerosis 187: 1–17. doi: 10.1016/j.atherosclerosis.2005.11.001
[19]
Kamata K, Noguchi M, Nagai M (1994) Hypotensive effects of lithospermic acid B isolated from the extract of Salviae miltiorrhizae Radix in the rat. Gen Pharmacol 25: 69–73. doi: 10.1016/0306-3623(94)90011-6
[20]
Soung DY, Rhee SH, Kim JS, Lee JY, Yang HS, et al. (2003) Peroxynitrite scavenging activity of lithospermate B from Salvia miltiorrhiza. J Pharm Pharmacol 55: 1427–32. doi: 10.1211/0022357021891
[21]
Lee BW, Chun SW, Kim SH, Lee Y, Kang ES, et al. (2011) Lithospermic acid B protects beta-cells from cytokine-induced apoptosis by alleviating apoptotic pathways and activating anti-apoptotic pathways of Nrf2-HO-1 and Sirt1. Toxicol Appl Pharmacol 252: 47–54. doi: 10.1016/j.taap.2011.01.018
[22]
Lee GT, Ha H, Jung M, Li H, Hong SW, et al. (2003) Delayed treatment with lithospermate B attenuates experimental diabetic renal injury. J Am Soc Nephrol 14: 709–20.
[23]
Hur KY, Seo HJ, Kang ES, Kim SH, Song S, et al. (2008) Therapeutic effect of magnesium lithospermate B on neointimal formation after balloon-induced vascular injury. Eur J Pharmacol 586: 226–33. doi: 10.1016/j.ejphar.2008.02.072
[24]
Hur KY, Kim SH, Choi MA, Williams DR, Lee YH, et al. (2010) Protective effects of magnesium lithospermate B against diabetic atherosclerosis via Nrf2-ARE-NQO1 transcriptional pathway. Atherosclerosis 211: 69–76. doi: 10.1016/j.atherosclerosis.2010.01.035
[25]
Praidou A, Androudi S, Brazitikos P, Karakiulakis G, Papakonstantinou E, et al. (2010) Angiogenic growth factors and their inhibitors in diabetic retinopathy. Curr Diabetes Rev 6: 304–12. doi: 10.2174/157339910793360815
[26]
Wu Y, Feng B, Chen S, Chakrabarti S (2012) ERK5 Regulates glucose-induced increased fibronectin production in the endothelial cells and in the retina in diabetes. Invest Ophthalmol Vis Sci 53: 8405–13. doi: 10.1167/iovs.12-10553
[27]
Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107: 1058–70. doi: 10.1161/circresaha.110.223545
[28]
Svoboda P, Ko SH, Cho B, Yoo SH, Choi SW, et al. (2008) Neopterin, a marker of immune response, and 8-hydroxy-2′-deoxyguanosine, a marker of oxidative stress, correlate at high age as determined by automated simultaneous high-performance liquid chromatography analysis of human urine. Anal Biochem 383: 236–42. doi: 10.1016/j.ab.2008.09.014
[29]
Dong QY, Cui Y, Chen L, Song J, Sun L (2008) Urinary 8-hydroxydeoxyguanosine levels in diabetic retinopathy patients. Eur J Ophthalmol 18: 94–8.
[30]
Park KS, Kim JH, Kim MS, Kim JM, Kim SK, et al. (2001) Effects of insulin and antioxidant on plasma 8-hydroxyguanine and tissue 8-hydroxydeoxyguanosine in streptozotocin-induced diabetic rats. Diabetes 50: 2837–41. doi: 10.2337/diabetes.50.12.2837
[31]
Jung M, Lee HC, Ahn CW, Park W, Choi S, et al. (2002) Effective isolation of magnesium lithospermate B and its inhibition of aldose reductase and fibronectin on mesangial cell line. Chem Pharm Bull (Tokyo) 50: 1135–6. doi: 10.1248/cpb.50.1135
[32]
Bandello F, Lattanzio R, Zucchiatti I, Del TC (2013) Pathophysiology and treatment of diabetic retinopathy. Acta Diabetol 50: 1–20. doi: 10.1007/s00592-012-0449-3
[33]
Antonetti DA, Klein R, Gardner TW (2012) Diabetic retinopathy. N Engl J Med 366: 1227–39. doi: 10.1056/nejmra1005073
[34]
Wang J, Xu X, Elliott MH, Zhu M, Le YZ (2010) Muller cell-derived VEGF is essential for diabetes-induced retinal inflammation and vascular leakage. Diabetes 59: 2297–305. doi: 10.2337/db09-1420
[35]
Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, et al. (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 331: 1480–7. doi: 10.1056/nejm199412013312203
[36]
Miyamoto K, Khosrof S, Bursell SE, Moromizato Y, Aiello LP, et al. (2000) Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability is mediated by intercellular adhesion molecule-1 (ICAM-1). Am J Pathol 156: 1733–9. doi: 10.1016/s0002-9440(10)65044-4
[37]
Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246: 1306–9. doi: 10.1126/science.2479986
[38]
Xu X, Zhu Q, Xia X, Zhang S, Gu Q, et al. (2004) Blood-retinal barrier breakdown induced by activation of protein kinase C via vascular endothelial growth factor in streptozotocin-induced diabetic rats. Curr Eye Res 28: 251–6. doi: 10.1076/ceyr.28.4.251.27834
[39]
Harhaj NS, Felinski EA, Wolpert EB, Sundstrom JM, Gardner TW, et al. (2006) VEGF activation of protein kinase C stimulates occludin phosphorylation and contributes to endothelial permeability. Invest Ophthalmol Vis Sci 47: 5106–15. doi: 10.1167/iovs.06-0322
[40]
Das EN, King GL (2007) The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol Res 55: 498–510. doi: 10.1016/j.phrs.2007.04.016
[41]
Waisbourd M, Goldstein M, Loewenstein A (2011) Treatment of diabetic retinopathy with anti-VEGF drugs. Acta Ophthalmol 89: 203–7. doi: 10.1111/j.1755-3768.2010.02010.x
[42]
Feit-Leichman RA, Kinouchi R, Takeda M, Fan Z, Mohr S, et al. (2005) Vascular damage in a mouse model of diabetic retinopathy: relation to neuronal and glial changes. Invest Ophthalmol Vis Sci 46: 4281–7. doi: 10.1167/iovs.04-1361
[43]
Yang JH, Kwak HW, Kim TG, Han J, Moon SW, et al. (2013) Retinal Neurodegeneration in Type II Diabetic Otsuka Long-Evans Tokushima Fatty Rats. Invest Ophthalmol Vis Sci 54: 3844–51. doi: 10.1167/iovs.12-11309
[44]
Geraldes P, Hiraoka-Yamamoto J, Matsumoto M, Clermont A, Leitges M, et al. (2009) Activation of PKC-delta and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat Med 15: 1298–306. doi: 10.1038/nm.2052
[45]
Roy S, Sato T, Paryani G, Kao R (2003) Downregulation of fibronectin overexpression reduces basement membrane thickening and vascular lesions in retinas of galactose-fed rats. Diabetes 52: 1229–34. doi: 10.2337/diabetes.52.5.1229
[46]
Roy S, Ha J, Trudeau K, Beglova E (2010) Vascular basement membrane thickening in diabetic retinopathy. Curr Eye Res 35: 1045–56. doi: 10.3109/02713683.2010.514659
[47]
Wu LL, Chiou CC, Chang PY, Wu JT (2004) Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta 339: 1–9. doi: 10.1016/j.cccn.2003.09.010
[48]
Mitamura Y, Takeuchi S, Matsuda A, Tagawa Y, Mizue Y, et al. (2001) Monocyte chemotactic protein-1 in the vitreous of patients with proliferative diabetic retinopathy. Ophthalmologica 215: 415–8. doi: 10.1159/000050900
[49]
van Hecke MV, Dekker JM, Nijpels G, Moll AC, Heine RJ, et al. (2005) Inflammation and endothelial dysfunction are associated with retinopathy: the Hoorn Study. Diabetologia 48: 1300–6. doi: 10.1007/s00125-005-1799-y
[50]
Makino N, Maeda T, Sugano M, Satoh S, Watanabe R, et al. (2005) High serum TNF-alpha level in Type 2 diabetic patients with microangiopathy is associated with eNOS down-regulation and apoptosis in endothelial cells. J Diabetes Complications 19: 347–55. doi: 10.1016/j.jdiacomp.2005.04.002
Jung KI, Kim JH, Park HY, Park CK (2013) Neuroprotective effects of cilostazol on retinal ganglion cell damage in diabetic rats. J Pharmacol Exp Ther 345: 457–63. doi: 10.1124/jpet.113.203067
[53]
Kim YH, Kim YS, Park CH, Chung IY, Yoo JM, et al. (2008) Protein kinase C-delta mediates neuronal apoptosis in the retinas of diabetic rats via the Akt signaling pathway. Diabetes 57: 2181–90. doi: 10.2337/db07-1431
[54]
Lu ZY, Bhutto IA, Amemiya T (2003) Retinal changes in Otsuka long-evans Tokushima Fatty rats (spontaneously diabetic rat) – possibility of a new experimental model for diabetic retinopathy. Jpn J Ophthalmol 47: 28–35. doi: 10.1016/s0021-5155(02)00631-7
[55]
Pescosolido N, Imperatrice B, Karavitis P (2008) Ocular disorders secondary to systemic disease and the potential role of carnitines. Drugs R D 9 Suppl 115–22. doi: 10.2165/0126839-200809001-00003
[56]
Nebbioso M, Federici M, Rusciano D, Evangelista M, Pescosolido N (2012) Oxidative stress in preretinopathic diabetes subjects and antioxidants. Diabetes Technol Ther 14: 257–63. doi: 10.1089/dia.2011.0172