[1] | Pomeroy LR, leB Williams PJ, Azam F, Hobbie JE (2007) The Microbial Loop. Oceanography 20: 28–33. doi: 10.5670/oceanog.2007.45
|
[2] | Pomeroy LR, Wiebe WJ (2001) Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquat Microb Ecol 23: 187–204. doi: 10.3354/ame023187
|
[3] | Berggren M, Laudon H, Jonsson A, Jansson M (2010) Nutrient Constraints on Metabolism Affect the Temperature Regulation of Aquatic Bacterial Growth Efficiency. Microb Ecol 60: 894–902 doi:10.1007/s00248-010-9751-1.
|
[4] | Degerman R, Dinasquet J, Riemann L, Sj?stedt de Luna S, Andersson A (2013) Effect of resource availability on bacterial community responses to increased temperature. Aquat Microb Ecol 68: 131–142 doi:10.3354/ame01609.
|
[5] | Hoikkala L, Aarnos H, Lignell R (2009) Changes in Nutrient and Carbon Availability and Temperature as Factors Controlling Bacterial Growth in the Northern Baltic Sea. Estuaries Coasts 32: 720–733 doi:10.1007/s12237-009-9154-z.
|
[6] | Solic M, Krstulovic N, Vilibic I, Bojanic N, Kuspipilic G, et al. (2009) Variability in the bottom-up and top-down controls of bacteria on trophic and temporal scales in the middle Adriatic Sea. Aquat Microb Ecol 58: 15–29 doi:10.3354/ame01342.
|
[7] | Billen G, Servais P, Becquevort S (1990) Dynamics of bacterioplankton in oligotrophic and eutrophic aquatic environments: bottom-up or top-down control? Hydrobiologia 207: 37–42. doi: 10.1007/bf00041438
|
[8] | Pernthaler J (2005) Predation on prokaryotes in the water column and its ecological implications. Nat Rev Micro 3: 537–546 doi:10.1038/nrmicro1180.
|
[9] | Herndl GJ, Agogué H, Baltar F, Reinthaler T, Sintes E, et al. (2008) Regulation of aquatic microbial processes: the “microbial loop” of the sunlit surface waters and the dark ocean dissected. Aquat Microb Ecol 53: 59–68 doi:10.3354/ame01225.
|
[10] | Ducklow H (2008) Microbial services: challenges for microbial ecologists in a changing world. Aquat Microb Ecol 53: 13–19 doi:10.3354/ame01220.
|
[11] | Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK (2005) The contribution of species richness and composition to bacterial services. Nature 436: 1157–1160 doi:10.1038/nature03891.
|
[12] | Carlson CA, Giovannoni SJ, Hansell DA, Goldberg SJ, Parsons R, et al. (2002) Effect of nutrient amendments on bacterioplankton production, community structure, and DOC utilization in the northwestern Sargasso Sea. Aquat Microb Ecol 30: 19–36. doi: 10.3354/ame030019
|
[13] | Vidal LO, Granéli W, Daniel CB, Heiberg L, Roland F (2011) Carbon and phosphorus regulating bacterial metabolism in oligotrophic boreal lakes. J Plankton Res 33: 1747–1756 doi:10.1093/plankt/fbr059.
|
[14] | Pomeroy LR (1974) The ocean’s food web, a changing paradigm. BioSciences: 499–504.
|
[15] | Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, et al. (1983) The Ecological Role of Water-Column Microbes in the Sea. Mar Ecol Prog Ser 10: 257–263. doi: 10.3354/meps010257
|
[16] | Farjalla VF, Amado AM, Suhett AL, Meirelles-Pereira F (2009) DOC removal paradigms in highly humic aquatic ecosystems. Environ Sci Pollut Res 16: 531–538 doi:10.1007/s11356-009-0165-x.
|
[17] | Vadstein O, Olsen LM, Busch A, Andersen T, Reinertsen HR (2003) Is phosphorus limitation of planktonic heterotrophic bacteria and accumulation of degradable DOC a normal phenomenon in phosphorus-limited systems? A microcosm study. FEMS Microbiol Ecol 46: 307–316 doi:10.1016/S0168-6496(03)00195-8.
|
[18] | Thingstad TF, Hagstr?m ?, Rassoulzadegan F (1997) Accumulation of degradable DOC in surface waters: Is it caused by a malfunctioning microbial loop? Limnol Oceanogr: 398–404.
|
[19] | Cotner JB, Biddanda BA (2002) Small Players, Large Role: Microbial Influence on Biogeochemical Processes in Pelagic Aquatic Ecosystems. Ecosystems 5: 105–121 doi:10.1007/s10021-001-0059-3.
|
[20] | Bertoni R, Callieri C, Balseiro E, Modenutti B (2008) Susceptibility of bacterioplankton to nutrient enrichment of oligotrophic and ultraoligotrophic lake waters. J Limnol 67: 120–127. doi: 10.4081/jlimnol.2008.120
|
[21] | Jansson M, Bergstr?m A-K, Lymer D, Vrede K, Karlsson J (2006) Bacterioplankton Growth and Nutrient Use Efficiencies Under Variable Organic Carbon and Inorganic Phosphorus Ratios. Microb Ecol 52: 358–364 doi:10.1007/s00248-006-9013-4.
|
[22] | Vadstein O (2000) Heterotrophic, planktonic bacteria and cycling of phosphorus: Phosphorus requirements, competitive ability and food web interactions. Adv Microb Ecol: 115–168.
|
[23] | Stets EG, Cotner JB (2008) The influence of dissolved organic carbon on bacterial phosphorus uptake and bacteria-phytoplankton dynamics in two Minnesota lakes. Limnol Oceanogr: 137–147.
|
[24] | Kritzberg ES, Cole JJ, Pace MM, Granéli W (2005) Does autochthonous primary production drive variability in bacterial metabolism and growth efficiency in lakes dominated by terrestrial C inputs? Aquat Microb Ecol 38: 103–111. doi: 10.3354/ame038103
|
[25] | Gasol JM, Vázquez-Domínguez E, Vaqué D, Agustí S, Duarte CM (2009) Bacterial activity and diffusive nutrient supply in the oligotrophic Central Atlantic Ocean. Aquat Microb Ecol 56: 1–12 doi:10.3354/ame01310.
|
[26] | Carlsson P, Granéli E, Granéli W, Rodriguez EG, de Carvalho WF, et al. (2012) Bacterial and phytoplankton nutrient limitation in tropical marine waters, and a coastal lake in Brazil. J Exp Mar Bio Ecol 418–419: 37–45 doi:10.1016/j.jembe.2012.03.012.
|
[27] | Kritzberg ES, Cole JJ, Pace MM, Granéli W (2006) Bacterial Growth on Allochthonous Carbon in Humic and Nutrient-enriched Lakes: Results from Whole-Lake 13C Addition Experiments. Ecosystems 9: 489–499 doi:10.1007/s10021-005-0115-5.
|
[28] | Cherrier J, Bauer JE, Druffel ER, Coffin RB, Chanton JP (1999) Radiocarbon in marine bacteria: Evidence for the ages of assimilated carbon. Limnol Oceanogr 44: 730–736. doi: 10.4319/lo.1999.44.3.0730
|
[29] | Granéli W, Bertilsson S, Philibert A (2004) Phosphorus limitation of bacterial growth in high Arctic lakes and ponds. Aquat Sci 66: 430–439 doi:10.1007/s00027-004-0732-7.
|
[30] | Farjalla VF, Esteves FA, Bozelli RL, Roland F (2002) Nutrient limitation of bacterial production in clear water Amazonian ecosystems. Hydrobiologia 489: 197–205.
|
[31] | Farjalla VF, Azevedo DA, Esteves FA, Bozelli RL, Roland F, et al. (2006) Influence of Hydrological Pulse on Bacterial Growth and DOC Uptake in a Clear-Water Amazonian Lake. Microb Ecol 52: 334–344 doi:10.1007/s00248-006-9021-4.
|
[32] | Medina-Sánchez JM, Carrillo P, Delgado-Molina JA, Bullejos FJ, Villar-Argaiz M (2010) Patterns of resource limitation of bacteria along a trophic gradient in Mediterranean inland waters. FEMS Microbiol Ecol 74: 554–565 doi:10.1111/j.1574-6941.2010.00969.x.
|
[33] | Ortega-Retuerta E, Pulido-Villena E, Reche I (2007) Effects of Dissolved Organic Matter Photoproducts and Mineral Nutrient Supply on Bacterial Growth in Mediterranean Inland Waters. Microb Ecol 54: 161–169 doi:10.1007/s00248-006-9186-x.
|
[34] | Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63: 90–104 doi:10.1016/j.gloplacha.2007.09.005.
|
[35] | IPCC (2013) Climate Change 2013. Summary for Policymakers. Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, et al., editors Cambridge, United Kindom and New York, NY, USA: Cambridge University Press.
|
[36] | Xenopoulos MA, Lodge DM, Frentress J, Kreps TA, Bridgham SD, et al. (2003) Regional comparisons of watershed determinants of dissolved organic carbon in temperate lakes from the Upper Great Lakes region and selected regions globally. Limnol Oceanogr 48: 2321–2334. doi: 10.4319/lo.2003.48.6.2321
|
[37] | Morales-Baquero R, Pulido-Villena E, Reche I (2006) Atmospheric inputs of phosphorus and nitrogen to the southwest Mediterranean region: Biogeochemical responses of high mountain lakes. Limnol Oceanogr 51: 830–837. doi: 10.4319/lo.2006.51.2.0830
|
[38] | Reche I, Ortega-Retuerta E, Romera O, Pulido-Villena E, Morales-Baquero R, et al. (2009) Effect of Saharan dust inputs on bacterial activity and community composition in Mediterranean lakes and reservoirs. Limnol Oceanogr 54: 869–879. doi: 10.4319/lo.2009.54.3.0869
|
[39] | Mladenov N, Sommaruga R, Morales-Baquero R, Laurion I, Camarero L, et al. (2011) Dust inputs and bacteria influence dissolved organic matter in clear alpine lakes. Nat Commun 2: 405–407 doi:10.1038/ncomms1411.
|
[40] | de Vicente I, Ortega-Retuerta E, Morales-Baquero R, Reche I (2012) Contribution of dust inputs to dissolved organic carbon and water transparency in Mediterranean reservoirs. Biogeosciences 9: 5049–5060 doi:10.5194/bg-9-5049-2012.
|
[41] | Medina-Sánchez JM, Delgado-Molina JA, Bratbak G, Bullejos FJ, Villar-Argaiz M, et al. (2013) Maximum in the Middle: Nonlinear Response of Microbial Plankton to Ultraviolet Radiation and Phosphorus. PLoS ONE 8: e60223 doi:10.1371/journal.pone.0060223.t001.
|
[42] | Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems a global problem. Environ Sci Pollut Res 10: 126–139 doi:10.1065/espr2002.12.142.
|
[43] | Vrede K (2005) Nutrient and Temperature Limitation of Bacterioplankton Growth in Temperate Lakes. Microb Ecol 49: 245–256 doi:10.1007/s00248-004-0259-4.
|
[44] | Saito MA, Goepfert TJ, Ritt JT (2008) Some thoughts on the concept of colimitation: Three definitions and the importance of bioavailability. Limnol Oceanogr 53: 276. doi: 10.4319/lo.2008.53.1.0276
|
[45] | Elser JJ, Kyle M, Steger L, Nydick KR, Baron JS (2009) Nutrient availability and phytoplankton nutrient limitation across a gradient of atmospheric nitrogen deposition. Ecology 90: 3062–3073. doi: 10.1890/08-1742.1
|
[46] | Allgeier JE, Rosemond AD, Layman CA (2011) The frequency and magnitude of non-additive responses to multiple nutrient enrichment. J Appl Ecol 48: 96–101 doi:10.1111/j.1365-2664.2010.01894.x.
|
[47] | Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, et al. (2011) Nutrient co-limitation of primary producer communities. Ecol Lett 14: 852–862. doi: 10.1111/j.1461-0248.2011.01651.x
|
[48] | Del Giorgio PA, Cole JJ (1998) Bacterial growth efficiency in natural aquatic systems. Annu Rev Ecol Syst: 503–541.
|
[49] | Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, et al. (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10: 1135–1142 doi:10.1111/j.1461-0248.2007.01113.x.
|
[50] | Nürnberg GK (1996) Trophic State of Clear and Colored, Soft- and Hardwater Lakes with Special Consideration of Nutrients, Anoxia, Phytoplankton and Fish. Lake Reserv Manag 12: 432–447 doi:10.1080/07438149609354283.
|
[51] | Reche I, Pulido-Villena E, Conde-Porcuna JM, Carrillo P (2001) Photoreactivity of dissolved organic matter from high-mountain lakes of Sierra Nevada, Spain. Arct Antarctic Alp Res: 426–434.
|
[52] | Medina-Sánchez JM, Villar-Argaiz M, Carrillo P (2004) Neither with nor without you: A complex algal control on bacterioplankton in a high mountain lake. Limnol Oceanogr: 1722–1733.
|
[53] | Jessup CM, Kassen R, Forde SE, Kerr B, Buckling A, et al. (2004) Big questions, small worlds: microbial model systems in ecology. Trends in Ecology & Evolution 19: 189–197 doi:10.1016/j.tree.2004.01.008.
|
[54] | Benton TG, Solan M, Travis JMJ, Sait SM (2007) Microcosm experiments can inform global ecological problems. Trends in Ecology & Evolution 22: 516–521 doi:10.1016/j.tree.2007.08.003.
|
[55] | Coelho FJRC, Santos AL, Coimbra J, Almeida A, Cunha ?, et al. (2013) Interactive effects of global climate change and pollution on marine microbes: the way ahead. Ecol Evol 3: 1808–1818 doi:10.1002/ece3.565.
|
[56] | Martínez R, Canteras JC, Cruz L (1975) Limnologic study of the Cubillas reservoir chemical characteristics of the water. Cuadernos de Ciencias Biológicas Universidad de Granada 4: 223–238.
|
[57] | Villar-Argaiz M, Medina-Sánchez JM, Carrillo P (2002) Microbial plankton response to contrasting climatic conditions: insights from community structure, productivity and fraction stoichiometry. Aquat Microb Ecol 29: 253–266. doi: 10.3354/ame029253
|
[58] | APHA (1992) Standard methods for the examination of water and wastewater, 18th ed. Washington: American Public Health Association.
|
[59] | Benner R, Strom M (1993) A critical evaluation of the analytical blank associated with DOC measurements by high-temperature catalytic oxidation. Mar Chem 41: 153–160. doi: 10.1016/0304-4203(93)90113-3
|
[60] | Fuhrman JA, Azam F (1982) Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar Chem 66: 109–120. doi: 10.1007/bf00397184
|
[61] | Smith DC, Azam F (1992) A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar Microb Food Webs 6: 107–114.
|
[62] | Bell RT (1993) Estimating production of heterotrophic bacterioplankton via incorporation of tritiated thymidine. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ, editors. Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, FL. 495–503.
|
[63] | Lee S, Fuhrman JA (1987) Relationships between Biovolume and Biomass of Naturally Derived Marine Bacterioplankton. Appl Environ Microbiol 53: 1298–1303.
|
[64] | Steemann-Nielsen E (1952) The use of Radio-active Carbon (C14) for measuring organic production in the sea. J Cons Int Explor Mer 18: 117–140 doi:10.1093/icesjms/18.2.117.
|
[65] | Carrillo P, Medina-Sánchez JM, Villar-Argaiz M (2002) The interaction of phytoplankton and bacteria in a high mountain lake: Importance of the spectral composition of solar radiation. Limnol Oceanogr: 1294–1306.
|
[66] | Anesio AM, Granéli W, Aiken GR, Kieber DJ, Mopper K (2005) Effect of Humic Substance Photodegradation on Bacterial Growth and Respiration in Lake Water. Appl Environ Microbiol 71: 6267–6275 doi:10.1128/AEM.71.10.6267-6275.2005.
|
[67] | Medina-Sánchez JM, Villar-Argaiz M, Carrillo P (2002) Modulation of the bacterial response to spectral solar radiation by algae and limiting nutrients. Freshwater Biol 47: 2191–2204 doi:10.1046/j.1365-2427.2002.00969.x.
|
[68] | Kamiya E, Izumiyama S, Nishimura M, Mitchell JG, Kogure K (2007) Effects of fixation and storage on flow cytometric analysis of marine bacteria. J Oceanogr 63: 101–112. doi: 10.1007/s10872-007-0008-7
|
[69] | Zubkov MV, Burkill PH, Topping JN (2007) Flow cytometric enumeration of DNA-stained oceanic planktonic protists. J Plankton Res 29: 79–86 doi:10.1093/plankt/fbl059.
|
[70] | Gasol JM, Del Giorgio PA (2000) Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci Mar 64: 197–224. doi: 10.3989/scimar.2000.64n2197
|
[71] | Zubkov MV, Burkill PH (2006) Syringe pumped high speed flow cytometry of oceanic phytoplankton. Cytometry A 69A: 1010–1019 doi:10.1002/cyto.a.20332.
|
[72] | Rott E (1981) Some results from phytoplankton counting intercalibrations. Aquatic Sci 43: 34–62. doi: 10.1007/bf02502471
|
[73] | Lund J, Kipling C, Le Cren ED (1958) The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170. doi: 10.1007/bf00007865
|
[74] | Sun J, Liu D (2003) Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res 25: 1331–1346 doi:10.1093/plankt/fbg096.
|
[75] | Olenina I, Hajdu S, Edler L, Andersson A, Wasmund N, et al. (2006) Biovolumes and size-classes of phytoplankton in the Baltic Sea. Baltic Sea environment proceedings 106: 1–144.
|
[76] | Rocha O, Duncan A (1985) The relationship between cell carbon and cell volume in freshwater algal species used in zooplanktonic studies. J Plankton Res 7: 279–294. doi: 10.1093/plankt/7.2.279
|
[77] | Putt M, Stoecker DK (1989) An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol Oceanogr: 1097–1103.
|
[78] | Tanaka JS (1987) How big is enough?: sample size and goodness fit in structural equation models with latent variables. Child Development: 134–146.
|
[79] | Bollen KA (1989) Structural Equations with Latent Variables. Barnett V, Bradley RA, Hunter JS, Kadane JB, Kendall DG, et al., editors Wiley Series in Probability and Mathematical Statistics.
|
[80] | Lohelin JC (1992) Latent variable models: An introduction to factor, path, and structural equation analysis. Mahwah NJ, editor Hillsdale, New Yersy: Lawrence Erlbaum.
|
[81] | Arrigo KR (2005) Marine microorganisms and global nutrient cycles. Nature 437: 349–355. doi: 10.1038/nature04159
|
[82] | Danger M, Daufresne T, Lucas F, Pissard S, Lacroix G (2008) Does Liebig’s law of the minimum scale up from species to communities? Oikos 117: 1741–1751 doi:10.1111/j.1600-0706.2008.16793.x.
|
[83] | Dodds WK, Cole JJ (2007) Expanding the concept of trophic state in aquatic ecosystems: It’s not just the autotrophs. Aquat Sci 69: 427–439 doi:10.1007/s00027-007-0922-1.
|
[84] | Sherr EB, Sherr BF (2002) Significance of predation by protists in aquatic microbial food webs. Antonie Van Leeuwenhoek 81: 293–308. doi: 10.1023/a:1020591307260
|
[85] | Apple JK, Del Giorgio PA, Kemp W (2006) Temperature regulation of bacterial production, respiration, and growth efficiency in a temperate salt-marsh estuary. Aquat Microb Ecol 43: 243–254. doi: 10.3354/ame043243
|
[86] | Felip M, Pace ML, Cole JJ (1996) Regulation of planktonic bacterial growth rates: the effects of temperature and resources. Microb Ecol 31: 15–28. doi: 10.1007/bf00175072
|
[87] | Hall EK, Cotner JB (2007) Interactive effect of temperature and resources on carbon cycling by freshwater bacterioplankton communities. Aquat Microb Ecol 49: 35–45 doi:10.3354/ame01124.
|
[88] | Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, et al. (2007) Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. Ecosystems 10: 172–185 doi:10.1007/s10021-006-9013-8.
|
[89] | Faithfull CL, Bergstr?m AK, Vrede T (2011) Effects of nutrients and physical lake characteristics on bacterial and phytoplankton production: A meta-analysis. Limnol Oceanogr 56: 1703–1713 doi:10.4319/lo.2011.56.5.1703.
|
[90] | Walther GR (2010) Community and ecosystem responses to recent climate change. Philos Trans R Soc Lond B: Biol Sci 365: 2019–2024 doi:10.1016/j.tree.2009.06.008.
|
[91] | Woodward G, Perkins DM, Brown LE (2010) Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos Trans R Soc Lond B: Biol Sci 365: 2093–2106 doi:10.1016/j.tree.2005.04.005.
|