全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Screening Strategies for Thyroid Disorders in the First and Second Trimester of Pregnancy in China

DOI: 10.1371/journal.pone.0099611

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Thyroid dysfunction during pregnancy is associated with multiple adverse outcomes, but whether all women should be screened for thyroid disorders during pregnancy remains controversial. Objective To evaluate the effectiveness of the targeted high risk case-finding approach for identifying women with thyroid dysfunction during the first and second trimesters of pregnancy. Methods Levels of thyroid stimulating hormone (TSH), free thyroxine (FT4), and thyroid peroxidase antibodies (TPOAb) were measured in 3882 Chinese women during the first and second trimester of pregnancy. All tested women were divided into the high risk or non-high risk groups, based on their history, findings from physical examination, or other clinical features suggestive of a thyroid disorder. Diagnosis of thyroid disorders was made according to the standard trimester-specific reference intervals. The prevalence of thyroid disorders in each group was determined, and the feasibility of a screening approach focusing exclusively on high risk women was evaluated to estimate the ability of finding women with thyroid dysfunction. Results The prevalence of overt hypothyroidism or hyperthyroidism in the high risk group was higher than in the non-high risk group during the first trimester (0.8% vs 0, χ2 = 7.10, p = 0.008; 1.6% vs 0.2%, χ2 = 7.02, p = 0.008, respectively). The prevalence of hypothyroxinemia or TPOAb positivity was significantly higher in the high risk group than in the non-high risk group during the second trimester (1.3% vs 0.5%, χ2 = 4.49, p = 0.034; 11.6% vs 8.4%, χ2 = 6.396, p = 0.011, respectively). The total prevalence of hypothyroidism or hyperthyroidism and the prevalence of subclinical hypothyroidism or hyperthyroidism were not statistically different between the high risk and non-high risk groups, for either the first or second trimester. Conclusion The high risk screening strategy failed to detect the majority of pregnant women with thyroid disorders. Therefore, we recommend universal screening of sTSH, FT4, and TPOAb during the first trimester and second trimester of pregnancy.

References

[1]  Allan WC, Haddow JE, Palomaki GE, Williams JR, Mitchell ML, et al. (2000) Maternal thyroid deficiency and pregnancy complications: implications for population screening. J Med Screen 7: 127–130.
[2]  Casey BM, Leveno KJ (2006) Thyroid disease in pregnancy. Obstet Gynecol 108: 1283–1292.
[3]  Casey BM, Dashe JS, Wells CE, McIntire DD, Byrd W, et al. (2005) Subclinical hypothyroidism and pregnancy outcomes. Obstet Gynecol 105: 239–245.
[4]  Haddow JE, Palomaki GE, Allan WC, Williams JR, Knight GJ, et al. (1999) Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med 341: 549–555.
[5]  Julvez J, Alvarez-Pedrerol M, Rebagliato M, Murcia M, Forns J, et al. (2013) Thyroxine levels during pregnancy in healthy women and early child neurodevelopment. Epidemiology 24: 150–157.
[6]  Negro R, Schwartz A, Gismondi R, Tinelli A, Mangieri T, et al. (2010) Universal screening versus case finding for detection and treatment of thyroid hormonal dysfunction during pregnancy. J Clin Endocrinol Metab 95: 1699–1707.
[7]  Endocrine Society, American Association of Clinical Endocrinologists, Asia & Oceania ThyroidAssociation; American Thyroid Association; European Thyroid Association; Latin American ThyroidAssociation (2007) Management of thyroid dysfunction during pregnancy and postpartum: an Endocrine Society Clinical Practice Guideline. Thyroid 17: 1159–1167.
[8]  Stagnaro-Green A, Abalovich M, Alexander E, Azizi F, Mestman J, et al. (2011) Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and postpartum. Thyroid 21: 1081–1125.
[9]  De Groot L, Abalovich M, Alexander EK, Amino N, Barbour L, et al. (2012) Management of thyroid dysfunction during pregnancy and postpartum: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 97: 2543–2565.
[10]  Baloch Z, Carayon P, Conte-Devolx B, Demers LM, Feldt-Rasmussen U, et al. (2003) Laboratory medicine practice guidelines. Laboratory support for the diagnosis and monitoring of thyroid disease. Thyroid 13: 3–126.
[11]  Su PY, Huang K, Hao JH, Xu YQ, Yan SQ, et al. (2011) Maternal thyroid function in the first twenty weeks of pregnancy and subsequent fetal and infant development: a prospective population-based cohort study in China. J Clin Endocrinol Metab 96: 3234–3241.
[12]  Hirsch D, Levy S, Nadler V, Kopel V, Shainberg B, et al. (2013) Pregnancy outcomes in women with severe hypothyroidism. Eur J Endocrinol 169: 313–320.
[13]  Pop VJ, Brouwers EP, Vader HL, Vulsma T, van Baar AL, et al. (2003) Maternal hypothyroxinaemia during early pregnancy and subsequent child development: a 3-year follow-up study. Clin Endocrinol (Oxf) 59: 282–288.
[14]  Mannisto T, Vaarasmaki M, Pouta A, Hartikainen AL, Ruokonen A, et al. (2010) Thyroid dysfunction and autoantibodies during pregnancy as predictive factors of pregnancy complications and maternal morbidity in later life. J Clin Endocrinol Metab 95: 1084–1094.
[15]  Mannisto T, Mendola P, Grewal J, Xie Y, Chen Z, et al. (2013) Thyroid diseases and adverse pregnancy outcomes in a contemporary US cohort. J Clin Endocrinol Metab 98: 2725–2733.
[16]  Papendieck P, Chiesa A, Prieto L, Gruneiro-Papendieck L (2009) Thyroid disorders of neonates born to mothers with Graves' disease. J Pediatr Endocrinol Metab 22: 547–553.
[17]  Sheffield JS, Cunningham FG (2004) Thyrotoxicosis and heart failure that complicate pregnancy. Am J Obstet Gynecol 190: 211–217.
[18]  Vaidya B, Anthony S, Bilous M, Shields B, Drury J, et al. (2007) Detection of thyroid dysfunction in early pregnancy: Universal screening or targeted high-risk case finding? J Clin Endocrinol Metab 92: 203–207.
[19]  Wang W, Teng W, Shan Z, Wang S, Li J, et al. (2011) The prevalence of thyroid disorders during early pregnancy in China: the benefits of universal screening in the first trimester of pregnancy. Eur J Endocrinol 164: 263–268.
[20]  Lazarus JH, Bestwick JP, Channon S, Paradice R, Maina A, et al. (2012) Antenatal thyroid screening and childhood cognitive function. N Engl J Med 366: 493–501.
[21]  Potlukova E, Potluka O, Jiskra J, Limanova Z, Telicka Z, et al. (2012) Is age a risk factor for hypothyroidism in pregnancy? An analysis of 5223 pregnant women. J Clin Endocrinol Metab 97: 1945–1952.
[22]  Prummel MF, Wiersinga WM (2004) Thyroid autoimmunity and miscarriage. Eur J Endocrinol 150: 751–755.
[23]  De Vivo A, Mancuso A, Giacobbe A, Moleti M, Maggio Savasta L, et al. (2010) Thyroid function in women found to have early pregnancy loss. Thyroid 20: 633–637.
[24]  Negro R, Formoso G, Mangieri T, Pezzarossa A, Dazzi D, et al. (2006) Levothyroxine treatment in euthyroid pregnant women with autoimmune thyroid disease: effects on obstetrical complications. J Clin Endocrinol Metab 91: 2587–2591.
[25]  Glinoer D, Riahi M, Grun JP, Kinthaert J (1994) Risk of subclinical hypothyroidism in pregnant women with asymptomatic autoimmune thyroid disorders. J Clin Endocrinol Metab 79: 197–204.
[26]  Dosiou C, Barnes J, Schwartz A, Negro R, Crapo L, et al. (2012) Cost-effectiveness of universal and risk-based screening for autoimmune thyroid disease in pregnant women. J Clin Endocrinol Metab 97: 1536–1546.
[27]  Thung SF, Funai EF, Grobman WA (2009) The cost-effectiveness of universal screening in pregnancy for subclinical hypothyroidism. Am J Obstet Gynecol 200: : 267 e261–267.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133