全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

ABA Renewal Involves Enhancements in Both GluA2-Lacking AMPA Receptor Activity and GluA1 Phosphorylation in the Lateral Amygdala

DOI: 10.1371/journal.pone.0100108

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fear renewal, the context-specific relapse of fear following fear extinction, is a leading animal model of post-traumatic stress disorders (PTSD) and fear-related disorders. Although fear extinction can diminish fear responses, this effect is restricted to the context where the extinction is carried out, and the extinguished fear strongly relapses when assessed in the original acquisition context (ABA renewal) or in a context distinct from the conditioning and extinction contexts (ABC renewal). We have previously identified Ser831 phosphorylation of GluA1 subunit in the lateral amygdala (LA) as a key molecular mechanism for ABC renewal. However, molecular mechanisms underlying ABA renewal remain to be elucidated. Here, we found that both the excitatory synaptic efficacy and GluA2-lacking AMPAR activity at thalamic input synapses onto the LA (T-LA synapses) were enhanced upon ABA renewal. GluA2-lacking AMPAR activity was also increased during low-threshold potentiation, a potential cellular substrate of renewal, at T-LA synapses. The microinjection of 1-naphtylacetyl-spermine (NASPM), a selective blocker of GluA2-lacking AMPARs, into the LA attenuated ABA renewal, suggesting a critical role of GluA2-lacking AMPARs in ABA renewal. We also found that Ser831 phosphorylation of GluA1 in the LA was increased upon ABA renewal. We developed a short peptide mimicking the Ser831-containing C-tail region of GluA1, which can be phosphorylated upon renewal (GluA1S); thus, the phosphorylated GluA1S may compete with Ser831-phosphorylated GluA1. This GluA1S peptide blocked the low-threshold potentiation when dialyzed into a recorded neuron. The microinjection of a cell-permeable form of GluA1S peptide into the LA attenuated ABA renewal. In support of the GluA1S experiments, a GluA1D peptide (in which the serine at 831 is replaced with a phosphomimetic amino acid, aspartate) attenuated ABA renewal when microinjected into the LA. These findings suggest that enhancements in both the GluA2-lacking AMPAR activity and GluA1 phosphorylation at Ser831 are required for ABA renewal.

References

[1]  Hermans D, Craske MG, Mineka S, Lovibond PF (2006) Extinction in human fear conditioning. Biol Psychiatry 60: 361–368 doi:10.1016/j.biopsych.2005.10.006.
[2]  Vervliet B, Craske MG, Hermans D (2013) Fear extinction and relapse: state of the art. Annu Rev Clin Psychol 9: 215–248 doi:10.1146/annurev-clinpsy-050212-185542.
[3]  Bouton ME (2004) Context and behavioral processes in extinction. Learn Mem 11: 485–494 doi:10.1101/lm.78804.
[4]  Corcoran KA, Maren S (2001) Hippocampal inactivation disrupts contextual retrieval of fear memory after extinction. J Neurosci 21: 1720–1726.
[5]  Herry C, Ciocchi S, Senn V, Demmou L, Müller C, et al. (2008) Switching on and off fear by distinct neuronal circuits. Nature 454: 600–606 doi:10.1038/nature07166.
[6]  Knapska E, Maren S (2009) Reciprocal patterns of c-Fos expression in the medial prefrontal cortex and amygdala after extinction and renewal of conditioned fear. Learn Mem 16: 486–493 doi:10.1101/lm.1463909.
[7]  Cole S, Richardson R, McNally GP (2013) Ventral hippocampal kappa opioid receptors mediate the renewal of fear following extinction in the rat. PLoS ONE 8: e58701 doi:10.1371/journal.pone.0058701.
[8]  Cole S, Richardson R, McNally GP (2011) Kappa opioid receptors mediate where fear is expressed following extinction training. Learn Mem 18: 88–95 doi:10.1101/lm.2049511.
[9]  Harris JA, Jones ML, Bailey GK, Westbrook RF (2000) Contextual control over conditioned responding in an extinction paradigm. J Exp Psychol Anim Behav Process 26: 174–185.
[10]  Thomas BL, Larsen N, Ayres JJB (2003) Role of context similarity in ABA, ABC, and AAB renewal paradigms: Implications for theories of renewal and for treating human phobias* 1. Learning and Motivation 34: 410–436 Available: http://www.sciencedirect.com/science/art?icle/pii/S0023969003000377.
[11]  Fonteyne R, Baeyens F (2011) Dissociations between ABA-, ABC-, and AAB-renewal of Pavlovian modulation in human sequential feature positive discrimination learning. Exp Psychol 58: 278–286 doi:10.1027/1618-3169/a000094.
[12]  Havermans RC, Keuker J, Lataster T, Jansen A (2005) Contextual control of extinguished conditioned performance in humans. Learning and Motivation 36: 1–19 doi:10.1016/j.lmot.2004.09.002.
[13]  Neumann DL (2006) The effects of physical context changes and multiple extinction contexts on two forms of renewal in a conditioned suppression task with humans. Learning and Motivation 37: 149–175 doi:10.1016/j.lmot.2005.06.004.
[14]  üng?r M, Lachnit H (2008) Dissociations among ABA, ABC, and AAB recovery effects. Learning and Motivation.
[15]  Wilson A, Brooks DC, Bouton ME (1995) The role of the rat hippocampal system in several effects of context in extinction. Behav Neurosci 109: 828–836.
[16]  Frohardt RJ, Guarraci FA, Bouton ME (2000) The effects of neurotoxic hippocampal lesions on two effects of context after fear extinction. Behav Neurosci 114: 227–240 doi:10.1037//0735-7044.114.2.227.
[17]  Corcoran KA, Maren S (2004) Factors regulating the effects of hippocampal inactivation on renewal of conditional fear after extinction. Learn Mem 11: 598–603 doi:10.1101/lm.78704.
[18]  Ehlers A, Hackmann A, Steil R, Clohessy S, Wenninger K, et al. (2002) The nature of intrusive memories after trauma: the warning signal hypothesis. Behav Res Ther 40: 995–1002.
[19]  Ledoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23: 155–184 doi:10.1146/annurev.neuro.23.1.155.
[20]  Nader K, Majidishad P, Amorapanth P, Ledoux JE (2001) Damage to the lateral and central, but not other, amygdaloid nuclei prevents the acquisition of auditory fear conditioning. Learn Mem 8: 156–163 doi:10.1101/lm.38101.
[21]  Wilensky AE, Schafe GE, Ledoux JE (1999) Functional inactivation of the amygdala before but not after auditory fear conditioning prevents memory formation. J Neurosci 19: RC48.
[22]  Rogan MT, St?ubli UV, Ledoux JE (1997) Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390: 604–607 doi:10.1038/37601.
[23]  McKernan MG, Shinnick-Gallagher P (1997) Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390: 607–611 doi:10.1038/37605.
[24]  Mao S-C, Chang C-H, Wu C-C, Orejanera MJ, Manzoni OJ, et al. (2013) Inhibition of Spontaneous Recovery of Fear by mGluR5 after Prolonged Extinction Training. PLoS ONE 8: e59580 doi:10.1371/journal.pone.0059580.g007.
[25]  Kim J, Lee S, Park K, Hong I, Song B, et al. (2007) Amygdala depotentiation and fear extinction. Proc Natl Acad Sci USA 104: 20955–20960 doi:10.1073/pnas.0710548105.
[26]  Maren S, Quirk GJ (2004) Neuronal signalling of fear memory. Nat Rev Neurosci 5: 844–852 doi:10.1038/nrn1535.
[27]  Myers KM, Davis M (2006) Mechanisms of fear extinction. Mol Psychiatry 12: 120–150.
[28]  Sotres-Bayon F, Sierra-Mercado D, Pardilla-Delgado E, Quirk GJ (2012) Gating of fear in prelimbic cortex by hippocampal and amygdala inputs. Neuron 76: 804–812 doi:10.1016/j.neuron.2012.09.028.
[29]  Lee S, Song B, Kim J, Park K, Hong I, et al. (2013) GluA1 phosphorylation at serine 831 in the lateral amygdala is required for fear renewal. Nat Neurosci 16: 1436–1444 doi:10.1038/nn.3491.
[30]  Mahanty NK, Sah P (1998) Calcium-permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala. Nature 394: 683–687 doi:10.1038/29312.
[31]  Kamboj SK, Swanson GT, Cull-Candy SG (1995) Intracellular spermine confers rectification on rat calcium-permeable AMPA and kainate receptors. J Physiol (Lond) 486 (Pt 2): 297–303.
[32]  Bowie D, Mayer ML (1995) Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron 15: 453–462 doi:10.1016/0896-6273(95)90049-7.
[33]  Koh DS, Burnashev N, Jonas P (1995) Block of native Ca (2+)-permeable AMPA receptors in rat brain by intracellular polyamines generates double rectification. J Physiol (Lond) 486 (Pt 2): 305–312.
[34]  Tóth K, McBain CJ (1998) Afferent-specific innervation of two distinct AMPA receptor subtypes on single hippocampal interneurons. Nat Neurosci 1: 572–578 doi:10.1038/2807.
[35]  Abraham WC, Bear MF (1996) Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci 19: 126–130.
[36]  Conrad K, Tseng K, Uejima J, Reimers J, Heng L, et al. (2008) Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature. doi:10.1038/nature06995.
[37]  Chung HJ, Xia J, Scannevin RH, Zhang X, Huganir RL (2000) Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain-containing proteins. J Neurosci 20: 7258–7267.
[38]  Dunah AW, Standaert DG (2001) Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. J Neurosci 21: 5546–5558.
[39]  Kristensen AS, Jenkins MA, Banke TG, Schousboe A, Makino Y, et al. (2011) Mechanism of Ca2+/calmodulin-dependent kinase II regulation of AMPA receptor gating. Nat Neurosci 14: 727–735 doi:10.1038/nn.2804.
[40]  Derkach VA, Oh MC, Guire ES, Soderling TR (2007) Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat Rev Neurosci 8: 101–113 doi:10.1038/nrn2055.
[41]  Kessels HW, Kopec CD, Klein ME, Malinow R (2009) Roles of stargazin and phosphorylation in the control of AMPA receptor subcellular distribution. Nat Neurosci 12: 888–896 doi:10.1038/nn.2340.
[42]  Guire ES, Oh MC, Soderling TR, Derkach VA (2008) Recruitment of calcium-permeable AMPA receptors during synaptic potentiation is regulated by CaM-kinase I. J Neurosci. 28: 6000–6009 doi:10.1523/JNEUROSCI.0384-08.2008.
[43]  Sapolsky RM (2001) Atrophy of the hippocampus in posttraumatic stress disorder: how and when? Hippocampus 11: 90–91 doi:10.1002/hipo.1026.
[44]  Clem RL, Huganir RL (2010) Calcium-permeable AMPA receptor dynamics mediate fear memory erasure. Science 330: 1108–1112 doi:10.1126/science.1195298.
[45]  Hong I, Kim J, Kim J, Lee S, Ko H-G, et al. (2013) AMPA receptor exchange underlies transient memory destabilization on retrieval. Proc Natl Acad Sci USA 110: 8218–8223 doi:10.1073/pnas.1305235110.
[46]  Noh K-M, Yokota H, Mashiko T, Castillo PE, Zukin RS, et al. (2005) Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death. Proc Natl Acad Sci USA 102: 12230–12235 doi:10.1073/pnas.0505408102.
[47]  Kim J, Lee S, Park H, Song B, Hong I, et al. (2007) Blockade of amygdala metabotropic glutamate receptor subtype 1 impairs fear extinction. Biochem Biophys Res Commun 355: 188–193 doi:10.1016/j.bbrc.2007.01.125.
[48]  Pitk?nen A, Savander V, Ledoux JE (1997) Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci 20: 517–523.
[49]  Malinow R, Tsien RW (1990) Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices. Nature 346: 177–180 doi:10.1038/346177a0.
[50]  Paxinos G, Watson C (1997) The Rat Brain in Stereotaxic Coordinates. San Diego: Academic Press. 1 p.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133