全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Proteome-Wide Analysis and Diel Proteomic Profiling of the Cyanobacterium Arthrospira platensis PCC 8005

DOI: 10.1371/journal.pone.0099076

Full-Text   Cite this paper   Add to My Lib

Abstract:

The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation.

References

[1]  Vonshak A (1997) Spirulina: growth, physiology and biochemistry, In A. Vonshak (ed.) Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. Taylor & Francis, London, United Kingdom. 43–66.
[2]  Belay A (2002) The potential application of Spirulina (Arthrospira) as a nutritional and therapeutic supplement in health management. J Am Nutra Assoc 5: 27–48.
[3]  Hendrickx L, De Wever H, Hermans V, Mastroleo F, Morin N, et al. (2006) Microbial ecology of the closed artificial ecosystem MELiSSA (Micro-Ecological Life Support System Alternative): reinventing and compartmentalizing the Earth's food and oxygen regeneration system for long-haul space exploration missions. Res Microbiol 157: 77–86. doi: 10.1016/j.resmic.2005.06.014
[4]  Norling B, Zak E, Andersson B, Pakrasi H (1998) 2D-isolation of pure plasma and thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 436: 189–192. doi: 10.1016/s0014-5793(98)01123-5
[5]  Fulda S, Huang F, Nilsson F, Hagemann M, Norling B (2000) Proteomics of Synechocystis sp. strain PCC 6803. Identification of periplasmic proteins in cells grown at low and high salt concentrations. Eur J Biochem 267: 5900–5907. doi: 10.1046/j.1432-1327.2000.01642.x
[6]  Herranen M, Battchikova N, Zhang P, Graf A, Sirpi? S, et al. (2005) Towards functional proteomics of membrane protein complexes in Synechocystis sp. PCC 6803. Plant Physiol 2004 134: 470–481. doi: 10.1104/pp.103.032326
[7]  Srivastava R, Pisareva T, Norling B (2005) Proteomic studies of the thylakoid membrane of Synechocystis sp. PCC 6803. Proteomics 5: 4905–4916. doi: 10.1002/pmic.200500111
[8]  Barrios-Llerena ME, Chong PK, Gan CS, Snijders AP, Reardon KF, et al. (2006) Shotgun proteomics of cyanobacteria—applications of experimental and data-mining techniques. Brief Funct Genomic Proteomic 5: 121–132.
[9]  Ekman M, Tollb?ck P, Klint J, Bergman B (2006) Protein expression profiles in an endosymbiotic cyanobacterium revealed by a proteomic approach. Mol Plant Microbe Interact 19: 1251–1261. doi: 10.1094/mpmi-19-1251
[10]  Koksharova OA, Klint J, Rasmussen U (2007) Comparative proteomics of cell division mutants and wild-type of Synechococcus sp. strain PCC 7942. Microbiology 153: 2505–2517. doi: 10.1099/mic.0.2007/007039-0
[11]  Zhang LF, Yang HM, Cui SX, Hu J, Wang J, et al. (2009) Proteomic analysis of plasma membranes of cyanobacterium Synechocystis sp. Strain PCC 6803 in response to high pH stress. J Proteome Res 8: 2892–2902. doi: 10.1021/pr900024w
[12]  Hongsthong A, Sirijuntarut M, Yutthanasirikul R, Senachak J, Kurdrid P, et al. (2009) Subcellular proteomic characterization of the high-temperature stress response of the cyanobacterium Spirulina platensis. Proteome Sci 7: 33. doi: 10.1186/1477-5956-7-33
[13]  Gan CS, Reardon KF, Wright PC (2005) Comparison of protein and peptide prefractionation methods for the shotgun proteomic analysis of Synechocystis sp. PCC 6803. Proteomics 5: 2468–2478. doi: 10.1002/pmic.200401266
[14]  Janssen PJ, Morin N, Mergeay M, Leroy B, Wattiez R, et al. (2010) Genome sequence of the edible cyanobacterium Arthrospira sp. PCC 8005. J Bacteriol 192: 2465–2476. doi: 10.1128/jb.00116-10
[15]  Matallana-Surget S, Leroy B, Wattiez R (2010) Shotgun proteomics: concept, key points and data mining. Expert Rev Proteomics 7: 5–7. doi: 10.1586/epr.09.101
[16]  Johnson CH, Golden SS, Ishiura M, Kondo T (1996) Circadian clocks in prokaryotes. Mol Microbiol 21: 5–11. doi: 10.1046/j.1365-2958.1996.00613.x
[17]  Kondo T, Ishiura M (2000) The circadian clock of cyanobacteria. Bioessays 22: 10–15. doi: 10.1002/(sici)1521-1878(200001)22:1<10::aid-bies4>3.0.co;2-a
[18]  Dong G, Golden SS (2008) How a cyanobacterium tells time. Curr Opin Microbiol 11: 541–546. doi: 10.1016/j.mib.2008.10.003
[19]  Schaffer R, Landgraf J, Accerbi M, Simon V, Larson M, et al. (2001) Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell 13: 113–123. doi: 10.2307/3871157
[20]  Kucho K, Okamoto K, Tsuchiya Y, Nomura S, Nango M, et al. (2005) Global analysis of circadian expression in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 187: 2190–2199. doi: 10.1128/jb.187.6.2190-2199.2005
[21]  Toepel J, Welsh E, Summerfield TC, Pakrasi HB, Sherman LA (2008) Differential transcriptional analysis of the cyanobacterium Cyanothece sp. strain ATCC 51142 during light-dark and continuous-light growth. J Bacteriol 190: 3904–3913. doi: 10.1128/jb.00206-08
[22]  Ito H, Mutsuda M, Murayama Y, Tomita J, Hosokawa N, et al. (2009) Cyanobacterial daily life with Kai-based circadian and diurnal genome-wide transcriptional control in Synechococcus elongatus. Proc Natl Acad Sci USA 106: 14168–14173. doi: 10.1073/pnas.0902587106
[23]  Leroy B, Rosier C, Erculisse V, Leys N, Mergeay M, et al. (2010) Differential proteomic analysis using isotope-coded protein-labeling strategies: comparison, improvements and application to simulated microgravity effect on Cupriavidus metallidurans CH34. Proteomics 10: 2281–2291. doi: 10.1002/pmic.200900286
[24]  Cogne G, Lehmann B, Dussap CG, Gros JB (2003) Uptake of macrominerals and trace elements by the cyanobacterium Spirulina platensis (Arthrospira platensis PCC 8005) under photoautotrophic conditions: culture medium optimization. Biotechnol Bioeng 81: 588–593. doi: 10.1002/bit.10504
[25]  Mastroleo F, Leroy B, Van Houdt R, s' Heeren C, Mergeay M, et al. (2009) Shotgun proteome analysis of Rhodospirillum rubrum S1H: integrating data from gel-free and gel-based peptides fractionation methods. J Proteome Res 8: 2530–2541. doi: 10.1021/pr900007d
[26]  Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, et al. (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4: 1265–1272. doi: 10.1074/mcp.m500061-mcp200
[27]  Bennett A, Bogorad L (1973) Comparative chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58: 419–435. doi: 10.1083/jcb.58.2.419
[28]  Sergeyenko TV, Los DA (2000) Identification of secreted proteins of the cyanobacterium Synechocystis sp. strain PCC 6803. FEMS Microbiol Lett 193: 213–216. doi: 10.1111/j.1574-6968.2000.tb09426.x
[29]  Ryjenkov DA, Tarutina M, Moskvin OV, Gomelsky M (2005) Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J Bacteriol 187: 1792–1798. doi: 10.1128/jb.187.5.1792-1798.2005
[30]  Waldron KJ, Robinson NJ (2009) How do bacterial cells ensure that metalloproteins get the correct metal? Nat Rev Microbiol 7:25–35. Erratum in: Nat Rev Microbiol 7: 172. doi: 10.1038/nrmicro2074
[31]  Irving H, Williams RJP (1948) Order of stability of metal complexes. Nature 162: 746–747. doi: 10.1038/162746a0
[32]  Fraústo da Silva JJR, Williams RJP (2001) The Biological Chemistry of the Elements. Oxford University Press.
[33]  Tottey S, Waldron KJ, Firbank SJ, Reale B, Bessant C, et al. (2008) Protein-folding location can regulate manganese-binding versus copper- or zinc-binding. Nature 455: 1138–1142. doi: 10.1038/nature07340
[34]  Barber J, Morris EP, da Fonseca PCA (2003) Interaction of the allophycocyanin core complex with photosystem II. Photochem Photobiol Sci 2: 536–541. doi: 10.1039/b300063j
[35]  Robertson McClung C (2006) Plant circadian rhythms. Plant Cell 18: 792–803. doi: 10.1105/tpc.106.040980
[36]  Xu Y, Mori T, Johnson CH (2000) Circadian clock-protein expression in cyanobacteria: rhythms and phase setting. The EMBO Journal 19: 3349–3357. doi: 10.1093/emboj/19.13.3349
[37]  Binder BJ, Chisholm SW (1995) Cell cycle regulation in marine Synechococcus sp. strains. Appl Environ Microbiol 61: 708–717.
[38]  Doolittle WF (1979) The cyanobacterial genome, its expression and the control of that expression. Adv Microb Physiol 20: 1–102. doi: 10.1016/s0065-2911(08)60206-4
[39]  Mullineaux CW, Stanewsky R (2009) The rolex and the hourglass: a simplified circadian clock in Prochlorococcus? J Bacteriol 191: 5333–5335. doi: 10.1128/jb.00719-09
[40]  Holtzendorff J, Partensky F, Jacquet S, Bruyant F, Marie D, et al. (2001) Diel expression of cell cycle-related genes in synchronized cultures of Prochlorococcus sp. strain PCC 9511. J Bacteriol 3: 915–920. doi: 10.1128/jb.183.3.915-920.2001
[41]  Asato Y (2003) Toward an understanding of cell growth and the cell division cycle of unicellular photoautotrophic cyanobacteria. Cell Mol Life Sci 60: 663–687. doi: 10.1007/s00018-003-2079-y
[42]  Aro EM, Suorsa M, Rokka A, Allahverdiyeva Y, Paakkarinen V, et al. (2005) Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. J Exp Bot 2005 56: 347–356. doi: 10.1093/jxb/eri041
[43]  Carpenter CD, Kreps JA, Simon AE (1994) Genes encoding glycine rich Arabidopsis thaliana proteins with RNA binding motifs are influenced by cold treatment and an endogenous circadian rhythm. Plant Physiol 104: 1015–1025. doi: 10.1104/pp.104.3.1015
[44]  Kim YO, Kang H (2006) The role of a zinc finger containing glycine-rich RNA binding protein during the cold adaptation process Arabidsposis thaliana. Plant Cell Physiol 47: 793–798. doi: 10.1093/pcp/pcj047
[45]  Tan X, Zhu T, Shen S, Yin C, Gao H, et al. (2011) Role of Rbp1 in the acquired chill-light tolerance of cyanobacteria. J Bacteriol 11: 2675–2683. doi: 10.1128/jb.01454-10
[46]  Wang D, Liang X, Chen X, Guo J (2013) Ribonucleoprotein complexes that control circadian clocks. Int J Mol Sci 14: 9018–9036. doi: 10.3390/ijms14059018
[47]  Axmann IM, Dühring U, Seeliger L, Arnold A, Vanselow JT, et al. (2009) Biochemical evidence for a timing mechanism in Prochlorococcus. J Bacteriol 191: 5342–5347. doi: 10.1128/jb.00419-09
[48]  Mergenhagen D, Mergenhagen E (1987) The biological clock of Chlamydomonas reinhardii in space. Eur J Cell Biol 43: 203–207.
[49]  Nikaido SS, Johnson CH (2000) Daily and circadian variation in survival from ultraviolet radiation in Chlamydomonas reinhardtii. Photochem Photobiol 71: 758–765. doi: 10.1562/0031-8655(2000)071<0758:dacvis>2.0.co;2

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133