[1] | Aguayo AJ, David S, Bray GM (1981) Influences of the glial environment on the elongation of axons after injury: transplantation studies in adult rodents. The Journal of experimental biology 95: 231–240.
|
[2] | David S, Aguayo AJ (1981) Axonal elongation into peripheral nervous system "bridges" after central nervous system injury in adult rats. Science 214: 931–933. doi: 10.1126/science.6171034
|
[3] | Tello F (1911) La influencia del neurotropismo en la regeneracion de los centros nerviosos. Trab Laborator Invest Biol University Madrid 9: 123–159.
|
[4] | Akbik F, Cafferty WB, Strittmatter SM (2011) Myelin associated inhibitors: A link between injury-induced and experience-dependent plasticity. Experimental neurology.
|
[5] | Buchli AD, Schwab ME (2005) Inhibition of Nogo: a key strategy to increase regeneration, plasticity and functional recovery of the lesioned central nervous system. Annals of medicine 37: 556–567. doi: 10.1080/07853890500407520
|
[6] | Bradbury EJ, Carter LM (2011) Manipulating the glial scar: chondroitinase ABC as a therapy for spinal cord injury. Brain research bulletin 84: 306–316. doi: 10.1016/j.brainresbull.2010.06.015
|
[7] | Fawcett JW (2006) Overcoming inhibition in the damaged spinal cord. Journal of neurotrauma 23: 371–383. doi: 10.1089/neu.2006.23.371
|
[8] | Galtrey CM, Fawcett JW (2007) The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain research reviews 54: 1–18. doi: 10.1016/j.brainresrev.2006.09.006
|
[9] | Hurtado A, Marcillo A, Frydel B, Bunge MB, Bramlett HM, et al. (2012) Anti-CD11d monoclonal antibody treatment for rat spinal cord compression injury. Experimental neurology 233: 606–611. doi: 10.1016/j.expneurol.2010.11.015
|
[10] | Pinzon A, Marcillo A, Pabon D, Bramlett HM, Bunge MB, et al. (2008) A re-assessment of erythropoietin as a neuroprotective agent following rat spinal cord compression or contusion injury. Experimental neurology 213: 129–136. doi: 10.1016/j.expneurol.2008.05.018
|
[11] | Pinzon A, Marcillo A, Quintana A, Stamler S, Bunge MB, et al. (2008) A re-assessment of minocycline as a neuroprotective agent in a rat spinal cord contusion model. Brain research 1243: 146–151. doi: 10.1016/j.brainres.2008.09.047
|
[12] | Sharp KG, Flanagan LA, Yee KM, Steward O (2012) A re-assessment of a combinatorial treatment involving Schwann cell transplants and elevation of cyclic AMP on recovery of motor function following thoracic spinal cord injury in rats. Experimental neurology 233: 625–644. doi: 10.1016/j.expneurol.2010.12.020
|
[13] | Steward O, Sharp K, Yee KM, Hofstadter M (2008) A re-assessment of the effects of a Nogo-66 receptor antagonist on regenerative growth of axons and locomotor recovery after spinal cord injury in mice. Experimental neurology 209: 446–468. doi: 10.1016/j.expneurol.2007.12.010
|
[14] | Aimone JB, Leasure JL, Perreau VM, Thallmair M (2004) Spatial and temporal gene expression profiling of the contused rat spinal cord. Experimental neurology 189: 204–221. doi: 10.1016/j.expneurol.2004.05.042
|
[15] | Crack PJ, Gould J, Bye N, Ross S, Ali U, et al. (2009) The genomic profile of the cerebral cortex after closed head injury in mice: effects of minocycline. Journal of neural transmission 116: 1–12. doi: 10.1007/s00702-008-0145-1
|
[16] | Verhaagen J, Van Kesteren RE, Bossers KA, Macgillavry HD, Mason MR, et al. (2012) Molecular target discovery for neural repair in the functional genomics era. Handbook of clinical neurology 109: 595–616. doi: 10.1016/b978-0-444-52137-8.00037-1
|
[17] | Gris P, Murphy S, Jacob JE, Atkinson I, Brown A (2003) Differential gene expression profiles in embryonic, adult-injured and adult-uninjured rat spinal cords. Molecular and cellular neurosciences 24: 555–567. doi: 10.1016/s1044-7431(03)00211-2
|
[18] | Chen K, Deng S, Lu H, Zheng Y, Yang G, et al. (2013) RNA-seq characterization of spinal cord injury transcriptome in acute/subacute phases: a resource for understanding the pathology at the systems level. PloS one 8: e72567. doi: 10.1371/journal.pone.0072567
|
[19] | Kumamaru H, Ohkawa Y, Saiwai H, Yamada H, Kubota K, et al. (2012) Direct isolation and RNA-seq reveal environment-dependent properties of engrafted neural stem/progenitor cells. Nature communications 3: 1140. doi: 10.1038/ncomms2132
|
[20] | Fawcett JW, Schwab ME, Montani L, Brazda N, Muller HW (2012) Defeating inhibition of regeneration by scar and myelin components. Handbook of clinical neurology 109: 503–522. doi: 10.1016/b978-0-444-52137-8.00031-0
|
[21] | Fry EJ, Stolp HB, Lane MA, Dziegielewska KM, Saunders NR (2003) Regeneration of supraspinal axons after complete transection of the thoracic spinal cord in neonatal opossums (Monodelphis domestica). J Comp Neurol 466: 422–444. doi: 10.1002/cne.10904
|
[22] | Saunders NR, Kitchener P, Knott GW, Nicholls JG, Potter A, et al. (1998) Development of walking, swimming and neuronal connections after complete spinal cord transection in the neonatal opossum, Monodelphis domestica. J Neurosci 18: 339–355.
|
[23] | Wang XM, Terman JR, Martin GF (1998) Regeneration of supraspinal axons after transection of the thoracic spinal cord in the developing opossum, Didelphis virginiana. J Comp Neurol 398: 83–97. doi: 10.1002/(sici)1096-9861(19980817)398:1<83::aid-cne5>3.0.co;2-5
|
[24] | Lane MA, Truettner JS, Brunschwig JP, Gomez A, Bunge MB, et al. (2007) Age-related differences in the local cellular and molecular responses to injury in developing spinal cord of the opossum, Monodelphis domestica. Eur J Neurosci 25: 1725–1742. doi: 10.1111/j.1460-9568.2007.05439.x
|
[25] | Wheaton BJ, Callaway JK, Ek CJ, Dziegielewska KM, Saunders NR (2011) Spontaneous development of full weight-supported stepping after complete spinal cord transection in the neonatal opossum, Monodelphis domestica. PloS one 6: e26826. doi: 10.1371/journal.pone.0026826
|
[26] | Wheaton BJ, Noor NM, Whish SC, Truettner JS, Dietrich WD, et al. (2013) Weight-bearing locomotion in the developing opossum, Monodelphis domestica following spinal transection: remodeling of neuronal circuits caudal to lesion. PloS one 8: e71181. doi: 10.1371/journal.pone.0071181
|
[27] | Saunders NR, Balkwill P, Knott G, Habgood MD, Mollgard K, et al. (1992) Growth of axons through a lesion in the intact CNS of fetal rat maintained in long-term culture. Proc Biol Sci 250: 171–180. doi: 10.1098/rspb.1992.0146
|
[28] | Farlow DN, Vansant G, Cameron AA, Chang J, Khoh-Reiter S, et al. (2000) Gene expression monitoring for gene discovery in models of peripheral and central nervous system differentiation, regeneration, and trauma. Journal of cellular biochemistry 80: 171–180. doi: 10.1002/1097-4644(20010201)80:2<171::aid-jcb20>3.0.co;2-5
|
[29] | Mladinic M, Lefevre C, Del Bel E, Nicholls J, Digby M (2010) Developmental changes of gene expression after spinal cord injury in neonatal opossums. Brain research 1363: 20–39. doi: 10.1016/j.brainres.2010.09.024
|
[30] | Mladinic M, Wintzer M, Del Bel E, Casseler C, Lazarevic D, et al. (2005) Differential expression of genes at stages when regeneration can and cannot occur after injury to immature mammalian spinal cord. Cellular and molecular neurobiology 25: 407–426. doi: 10.1007/s10571-005-3150-z
|
[31] | Mikkelsen TS, Wakefield MJ, Aken B, Amemiya CT, Chang JL, et al. (2007) Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 447: 167–177.
|
[32] | Noor NM, Steer DL, Wheaton BJ, Ek CJ, Truettner JS, et al. (2011) Age-dependent changes in the proteome following complete spinal cord transection in a postnatal South American opossum (Monodelphis domestica). PloS one 6: e27465. doi: 10.1371/journal.pone.0027465
|
[33] | Noor NM, Mollgard K, Wheaton BJ, Steer DL, Truettner JS, et al. (2013) Expression and cellular distribution of ubiquitin in response to injury in the developing spinal cord of Monodelphis domestica. PloS one 8: e62120. doi: 10.1371/journal.pone.0062120
|
[34] | Saunders NR, Adam E, Reader M, Mollgard K (1989) Monodelphis domestica (grey short-tailed opossum): an accessible model for studies of early neocortical development. Anat Embryol (Berl) 180: 227–236. doi: 10.1007/bf00315881
|
[35] | Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nature methods 9: 357–359. doi: 10.1038/nmeth.1923
|
[36] | Flicek P, Amode MR, Barrell D, Beal K, Brent S, et al. (2011) Ensembl 2011. Nucleic acids research 39: D800–806. doi: 10.1093/nar/gkq1064
|
[37] | Anders A (2011) HTSeq: Analysing high-throughput sequencing data with Python. Available: http://www.huber.embl.de/users/anders/HT?Seq. Accessed 2014, May 14.
|
[38] | Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome biology 5: R80.
|
[39] | McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic acids research 40: 4288–4297. doi: 10.1093/nar/gks042
|
[40] | Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome biology 11: R14. doi: 10.1186/gb-2010-11-2-r14
|
[41] | Gerner C, Frohwein U, Gotzmann J, Bayer E, Gelbmann D, et al. (2000) The Fas-induced apoptosis analyzed by high throughput proteome analysis. The Journal of biological chemistry 275: 39018–39026. doi: 10.1074/jbc.m006495200
|
[42] | Dziegielewska KM, Daikuhara Y, Ohnishi T, Waite MP, Ek J, et al. (2000) Fetuin in the developing neocortex of the rat: distribution and origin. J Comp Neurol 423: 373–388. doi: 10.1002/1096-9861(20000731)423:3<373::aid-cne2>3.0.co;2-d
|
[43] | McKerracher L, Ferraro GB, Fournier AE (2012) Rho signaling and axon regeneration. International review of neurobiology 105: 117–140. doi: 10.1016/b978-0-12-398309-1.00007-x
|
[44] | Parra ZE, Baker ML, Lopez AM, Trujillo J, Volpe JM, et al. (2009) TCR mu recombination and transcription relative to the conventional TCR during postnatal development in opossums. Journal of immunology 182: 154–163. doi: 10.4049/jimmunol.182.1.154
|
[45] | Jameson J, Ugarte K, Chen N, Yachi P, Fuchs E, et al. (2002) A role for skin gammadelta T cells in wound repair. Science 296: 747–749. doi: 10.1126/science.1069639
|
[46] | Wang X, Sharp AR, Miller RD (2012) Early postnatal B cell ontogeny and antibody repertoire maturation in the opossum, Monodelphis domestica. PloS one 7: e45931. doi: 10.1371/journal.pone.0045931
|
[47] | Pillai S, Netravali IA, Cariappa A, Mattoo H (2012) Siglecs and immune regulation. Annual review of immunology 30: 357–392. doi: 10.1146/annurev-immunol-020711-075018
|
[48] | Vogt L, Schmitz N, Kurrer MO, Bauer M, Hinton HI, et al. (2006) VSIG4, a B7 family-related protein, is a negative regulator of T cell activation. The Journal of clinical investigation 116: 2817–2826. doi: 10.1172/jci25673
|
[49] | Miller RD (2010) Those other mammals: the immunoglobulins and T cell receptors of marsupials and monotremes. Seminars in immunology 22: 3–9. doi: 10.1016/j.smim.2009.11.005
|
[50] | Duffy P, Wang X, Siegel CS, Tu N, Henkemeyer M, et al. (2012) Myelin-derived ephrinB3 restricts axonal regeneration and recovery after adult CNS injury. Proceedings of the National Academy of Sciences of the United States of America 109: 5063–5068. doi: 10.1073/pnas.1113953109
|
[51] | Pernet V, Schwab ME (2012) The role of Nogo-A in axonal plasticity, regrowth and repair. Cell and tissue research 349: 97–104. doi: 10.1007/s00441-012-1432-6
|
[52] | Goldshmit Y, Spanevello MD, Tajouri S, Li L, Rogers F, et al. (2011) EphA4 blockers promote axonal regeneration and functional recovery following spinal cord injury in mice. PloS one 6: e24636. doi: 10.1371/journal.pone.0024636
|
[53] | Hollis ERII, Zou Y (2012) Expression of the Wnt signaling system in central nervous system axon guidance and regeneration. Frontiers in molecular neuroscience 5: 5. doi: 10.3389/fnmol.2012.00005
|
[54] | Goldshmit Y, Galea MP, Wise G, Bartlett PF, Turnley AM (2004) Axonal regeneration and lack of astrocytic gliosis in EphA4-deficient mice. J Neurosci 24: 10064–10073. doi: 10.1523/jneurosci.2981-04.2004
|
[55] | Cruz-Orengo L, Figueroa JD, Torrado A, Puig A, Whittemore SR, et al. (2007) Reduction of EphA4 receptor expression after spinal cord injury does not induce axonal regeneration or return of tcMMEP response. Neurosci Lett 418: 49–54. doi: 10.1016/j.neulet.2007.03.015
|
[56] | Zhang J, Liu WL, Tang DC, Chen L, Wang M, et al. (2002) Identification and characterization of a novel member of olfactomedin-related protein family, hGC-1, expressed during myeloid lineage development. Gene 283: 83–93. doi: 10.1016/s0378-1119(01)00763-6
|
[57] | Liu W, Chen L, Zhu J, Rodgers GP (2006) The glycoprotein hGC-1 binds to cadherin and lectins. Experimental cell research 312: 1785–1797. doi: 10.1016/j.yexcr.2006.02.011
|
[58] | Kulkarni NH, Karavanich CA, Atchley WR, Anholt RR (2000) Characterization and differential expression of a human gene family of olfactomedin-related proteins. Genetical research 76: 41–50. doi: 10.1017/s0016672300004584
|
[59] | Liu W, Yan M, Liu Y, Wang R, Li C, et al. (2010) Olfactomedin 4 down-regulates innate immunity against Helicobacter pylori infection. Proceedings of the National Academy of Sciences of the United States of America 107: 11056–11061. doi: 10.1073/pnas.1001269107
|
[60] | Xu J, Kim GM, Ahmed SH, Yan P, Xu XM, et al. (2001) Glucocorticoid receptor-mediated suppression of activator protein-1 activation and matrix metalloproteinase expression after spinal cord injury. The Journal of neuroscience: the official journal of the Society for Neuroscience 21: 92–97.
|
[61] | Buss A, Pech K, Kakulas BA, Martin D, Schoenen J, et al. (2007) Matrix metalloproteinases and their inhibitors in human traumatic spinal cord injury. BMC neurology 7: 17. doi: 10.1186/1471-2377-7-17
|
[62] | Zhang H, Adwanikar H, Werb Z, Noble-Haeusslein LJ (2010) Matrix metalloproteinases and neurotrauma: evolving roles in injury and reparative processes. The Neuroscientist: a review journal bringing neurobiology, neurology and psychiatry 16: 156–170. doi: 10.1177/1073858409355830
|
[63] | Eva R, Andrews MR, Franssen EH, Fawcett JW (2012) Intrinsic mechanisms regulating axon regeneration: an integrin perspective. International review of neurobiology 106: 75–104. doi: 10.1016/b978-0-12-407178-0.00004-1
|
[64] | Fleming JC, Bao F, Chen Y, Hamilton EF, Relton JK, et al. (2008) Alpha4beta1 integrin blockade after spinal cord injury decreases damage and improves neurological function. Experimental neurology 214: 147–159. doi: 10.1016/j.expneurol.2008.04.024
|
[65] | Hall A, Lalli G (2010) Rho and Ras GTPases in axon growth, guidance, and branching. Cold Spring Harbor perspectives in biology 2: a001818. doi: 10.1101/cshperspect.a001818
|
[66] | Redies C, Heyder J, Kohoutek T, Staes K, Van Roy F (2008) Expression of protocadherin-1 (Pcdh1) during mouse development. Developmental dynamics: an official publication of the American Association of Anatomists 237: 2496–2505. doi: 10.1002/dvdy.21650
|
[67] | Kubota F, Murakami T, Tajika Y, Yorifuji H (2008) Expression of protocadherin 18 in the CNS and pharyngeal arches of zebrafish embryos. The International journal of developmental biology 52: 397–405. doi: 10.1387/ijdb.072424fk
|
[68] | Lin J, Wang C, Redies C (2012) Expression of delta-protocadherins in the spinal cord of the chicken embryo. The Journal of comparative neurology 520: 1509–1531. doi: 10.1002/cne.22808
|
[69] | Biancheri R, Rosano C, Denegri L, Lamantea E, Pinto F, et al. (2013) Expanded spectrum of Pelizaeus-Merzbacher-like disease: literature revision and description of a novel GJC2 mutation in an unusually severe form. European journal of human genetics: EJHG 21: 34–39. doi: 10.1038/ejhg.2012.93
|
[70] | Isaksson J, Farooque M, Holtz A, Hillered L, Olsson Y (1999) Expression of ICAM-1 and CD11b after experimental spinal cord injury in rats. Journal of neurotrauma 16: 165–173. doi: 10.1089/neu.1999.16.165
|
[71] | Hamada Y, Ikata T, Katoh S, Nakauchi K, Niwa M, et al. (1996) Involvement of an intercellular adhesion molecule 1-dependent pathway in the pathogenesis of secondary changes after spinal cord injury in rats. Journal of neurochemistry 66: 1525–1531. doi: 10.1046/j.1471-4159.1996.66041525.x
|
[72] | Hirokawa N, Niwa S, Tanaka Y (2010) Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68: 610–638. doi: 10.1016/j.neuron.2010.09.039
|
[73] | van den Berg R, Hoogenraad CC (2012) Molecular motors in cargo trafficking and synapse assembly. Advances in experimental medicine and biology 970: 173–196. doi: 10.1007/978-3-7091-0932-8_8
|
[74] | Kneussel M, Wagner W (2013) Myosin motors at neuronal synapses: drivers of membrane transport and actin dynamics. Nature reviews Neuroscience 14: 233–247. doi: 10.1038/nrn3445
|
[75] | Knudson CM, Stang KK, Moomaw CR, Slaughter CA, Campbell KP (1993) Primary structure and topological analysis of a skeletal muscle-specific junctional sarcoplasmic reticulum glycoprotein (triadin). The Journal of biological chemistry 268: 12646–12654.
|
[76] | Dulhunty A, Wei L, Beard N (2009) Junctin - the quiet achiever. The Journal of physiology 587: 3135–3137. doi: 10.1113/jphysiol.2009.171959
|
[77] | Li C, Dong S, Wang H, Hu Y (2011) Microarray analysis of gene expression changes in the brains of NR2B-induced memory-enhanced mice. Neuroscience 197: 121–131. doi: 10.1016/j.neuroscience.2011.08.031
|
[78] | Seale SM, Feng Q, Agarwal AK, El-Alfy AT (2012) Neurobehavioral and transcriptional effects of acrylamide in juvenile rats. Pharmacology, biochemistry, and behavior 101: 77–84. doi: 10.1016/j.pbb.2011.12.006
|
[79] | Dentice M, Bandyopadhyay A, Gereben B, Callebaut I, Christoffolete MA, et al. (2005) The Hedgehog-inducible ubiquitin ligase subunit WSB-1 modulates thyroid hormone activation and PTHrP secretion in the developing growth plate. Nature cell biology 7: 698–705. doi: 10.1038/ncb1272
|
[80] | Choi DW, Seo YM, Kim EA, Sung KS, Ahn JW, et al. (2008) Ubiquitination and degradation of homeodomain-interacting protein kinase 2 by WD40 repeat/SOCS box protein WSB-1. The Journal of biological chemistry 283: 4682–4689. doi: 10.1074/jbc.m708873200
|
[81] | Ponyeam W, Hagen T (2012) Characterization of the Cullin7 E3 ubiquitin ligase—heterodimerization of cullin substrate receptors as a novel mechanism to regulate cullin E3 ligase activity. Cellular signalling 24: 290–295. doi: 10.1016/j.cellsig.2011.08.020
|
[82] | Dealy MJ, Nguyen KV, Lo J, Gstaiger M, Krek W, et al. (1999) Loss of Cul1 results in early embryonic lethality and dysregulation of cyclin E. Nature genetics. 23: 245–248.
|
[83] | Singer JD, Gurian-West M, Clurman B, Roberts JM (1999) Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells. Genes & development 13: 2375–2387. doi: 10.1101/gad.13.18.2375
|
[84] | Arai T, Kasper JS, Skaar JR, Ali SH, Takahashi C, et al. (2003) Targeted disruption of p185/Cul7 gene results in abnormal vascular morphogenesis. Proceedings of the National Academy of Sciences of the United States of America 100: 9855–9860. doi: 10.1073/pnas.1733908100
|
[85] | Pei XH, Bai F, Li Z, Smith MD, Whitewolf G, et al. (2011) Cytoplasmic CUL9/PARC ubiquitin ligase is a tumor suppressor and promotes p53-dependent apoptosis. Cancer research 71: 2969–2977. doi: 10.1158/0008-5472.can-10-4300
|
[86] | Tasaki T, Sohr R, Xia Z, Hellweg R, Hortnagl H, et al. (2007) Biochemical and genetic studies of UBR3, a ubiquitin ligase with a function in olfactory and other sensory systems. The Journal of biological chemistry 282: 18510–18520. doi: 10.1074/jbc.m701894200
|
[87] | Seo JH, Zilber Y, Babayeva S, Liu J, Kyriakopoulos P, et al. (2011) Mutations in the planar cell polarity gene, Fuzzy, are associated with neural tube defects in humans. Human molecular genetics 20: 4324–4333. doi: 10.1093/hmg/ddr359
|
[88] | Jungbluth S, Bell E, Lumsden A (1999) Specification of distinct motor neuron identities by the singular activities of individual Hox genes. Development 126: 2751–2758.
|
[89] | Yau TO, Kwan CT, Jakt LM, Stallwood N, Cordes S, et al. (2002) Auto/cross-regulation of Hoxb3 expression in posterior hindbrain and spinal cord. Developmental biology 252: 287–300. doi: 10.1006/dbio.2002.0849
|
[90] | Lin AW, Carpenter EM (2003) Hoxa10 and Hoxd10 coordinately regulate lumbar motor neuron patterning. Journal of neurobiology 56: 328–337. doi: 10.1002/neu.10239
|
[91] | Afjehi-Sadat L, Brejnikow M, Kang SU, Vishwanath V, Walder N, et al. (2010) Differential protein levels and post-translational modifications in spinal cord injury of the rat. Journal of proteome research 9: 1591–1597. doi: 10.1021/pr901049a
|
[92] | Xiao L, Ma ZL, Li X, Lin QX, Que HP, et al. (2005) cDNA microarray analysis of spinal cord injury and regeneration related genes in rat. Sheng li xue bao: [Acta physiologica Sinica] 57: 705–713.
|
[93] | Hu WH, Hausmann ON, Yan MS, Walters WM, Wong PK, et al. (2002) Identification and characterization of a novel Nogo-interacting mitochondrial protein (NIMP). Journal of neurochemistry 81: 36–45. doi: 10.1046/j.1471-4159.2002.00788.x
|
[94] | Zhu H, Santo A, Li Y (2012) The antioxidant enzyme peroxiredoxin and its protective role in neurological disorders. Experimental biology and medicine 237: 143–149. doi: 10.1258/ebm.2011.011152
|
[95] | Swisher JF, Khatri U, Feldman GM (2007) Annexin A2 is a soluble mediator of macrophage activation. Journal of leukocyte biology 82: 1174–1184. doi: 10.1189/jlb.0307154
|
[96] | Catania A (2008) Neuroprotective actions of melanocortins: a therapeutic opportunity. Trends in neurosciences 31: 353–360. doi: 10.1016/j.tins.2008.04.002
|
[97] | Iketani M, Iizuka A, Sengoku K, Kurihara Y, Nakamura F, et al. (2013) Regulation of neurite outgrowth mediated by localized phosphorylation of protein translational factor eEF2 in growth cones. Developmental neurobiology 73: 230–246. doi: 10.1002/dneu.22058
|
[98] | McGraw J, Oschipok LW, Liu J, Hiebert GW, Mak CF, et al. (2004) Galectin-1 expression correlates with the regenerative potential of rubrospinal and spinal motoneurons. Neuroscience 128: 713–719. doi: 10.1016/j.neuroscience.2004.06.075
|
[99] | McGraw J, Gaudet AD, Oschipok LW, Kadoya T, Horie H, et al. (2005) Regulation of neuronal and glial galectin-1 expression by peripheral and central axotomy of rat primary afferent neurons. Experimental neurology 195: 103–114. doi: 10.1016/j.expneurol.2005.04.004
|
[100] | Kurihara D, Ueno M, Tanaka T, Yamashita T (2010) Expression of galectin-1 in immune cells and glial cells after spinal cord injury. Neuroscience research 66: 265–270. doi: 10.1016/j.neures.2009.11.008
|
[101] | Lindquist S, Craig EA (1988) The heat-shock proteins. Annual review of genetics 22: 631–677. doi: 10.1146/annurev.genet.22.1.631
|
[102] | Chen A, McEwen ML, Sun S, Ravikumar R, Springer JE (2010) Proteomic and phosphoproteomic analyses of the soluble fraction following acute spinal cord contusion in rats. Journal of neurotrauma 27: 263–274. doi: 10.1089/neu.2009.1051
|
[103] | Yan X, Liu J, Luo Z, Ding Q, Mao X, et al. (2010) Proteomic profiling of proteins in rat spinal cord induced by contusion injury. Neurochemistry international 56: 971–983. doi: 10.1016/j.neuint.2010.04.007
|
[104] | Reddy SJ, La Marca F, Park P (2008) The role of heat shock proteins in spinal cord injury. Neurosurgical focus 25: E4. doi: 10.3171/foc.2008.25.11.e4
|
[105] | Daneman R, Zhou L, Agalliu D, Cahoy JD, Kaushal A, et al. (2010) The mouse blood-brain barrier transcriptome: a new resource for understanding the development and function of brain endothelial cells. PloS one 5: e13741. doi: 10.1371/journal.pone.0013741
|
[106] | Chatzipanteli K, Yanagawa Y, Marcillo AE, Kraydieh S, Yezierski RP, et al. (2000) Posttraumatic hypothermia reduces polymorphonuclear leukocyte accumulation following spinal cord injury in rats. Journal of neurotrauma 17: 321–332. doi: 10.1089/neu.2000.17.321
|
[107] | Kinoshita K, Chatzipanteli i K, Vitarbo E, Truettner JS, Alonso OF, et al. (2002) Interleukin-1beta messenger ribonucleic acid and protein levels after fluid-percussion brain injury in rats: importance of injury severity and brain temperature. Neurosurgery 51: 195–203 discussion 203. doi: 10.1097/00006123-200207000-00027
|
[108] | Truettner JS, Alonso OF, Bramlett HM, Dietrich WD (2011) Therapeutic hypothermia alters microRNA responses to traumatic brain injury in rats. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 31: 1897–1907. doi: 10.1038/jcbfm.2011.33
|
[109] | Truettner JS, Suzuki T, Dietrich WD (2005) The effect of therapeutic hypothermia on the expression of inflammatory response genes following moderate traumatic brain injury in the rat. Brain research Molecular brain research 138: 124–134. doi: 10.1016/j.molbrainres.2005.04.006
|
[110] | Kraus DB, Fadem BH (1987) Reproduction, development and physiology of the gray short-tailed opossum (Monodelphis domestica). Lab Anim Sci 37: 478–482.
|
[111] | Alexander JK, Popovich PG (2009) Neuroinflammation in spinal cord injury: therapeutic targets for neuroprotection and regeneration. Progress in brain research 175: 125–137. doi: 10.1016/s0079-6123(09)17508-8
|
[112] | Bethea JR, Dietrich WD (2002) Targeting the host inflammatory response in traumatic spinal cord injury. Current opinion in neurology 15: 355–360. doi: 10.1097/00019052-200206000-00021
|
[113] | Fleming JC, Norenberg MD, Ramsay DA, Dekaban GA, Marcillo AE, et al. (2006) The cellular inflammatory response in human spinal cords after injury. Brain: a journal of neurology 129: 3249–3269. doi: 10.1093/brain/awl296
|
[114] | Ek CJ, Habgood MD, Callaway JK, Dennis R, Dziegielewska KM, et al. (2010) Spatio-temporal progression of grey and white matter damage following contusion injury in rat spinal cord. PLoS One 5: e12021. doi: 10.1371/journal.pone.0012021
|
[115] | Ek CJ, Habgood MD, Dennis R, Dziegielewska KM, Mallard C, et al. (2012) Pathological changes in the white matter after spinal contusion injury in the rat. PloS one 7: e43484. doi: 10.1371/journal.pone.0043484
|
[116] | Veeravalli KK, Dasari VR, Rao JS (2012) Regulation of proteases after spinal cord injury. Journal of neurotrauma 29: 2251–2262. doi: 10.1089/neu.2012.2460
|
[117] | Veeravalli KK, Dasari VR, Tsung AJ, Dinh DH, Gujrati M, et al. (2009) Human umbilical cord blood stem cells upregulate matrix metalloproteinase-2 in rats after spinal cord injury. Neurobiology of disease 36: 200–212. doi: 10.1016/j.nbd.2009.07.012
|
[118] | Nakaya N, Sultana A, Lee HS, Tomarev SI (2012) Olfactomedin 1 interacts with the Nogo A receptor complex to regulate axon growth. The Journal of biological chemistry 287: 37171–37184. doi: 10.1074/jbc.m112.389916
|
[119] | Gardiner NJ (2011) Integrins and the extracellular matrix: key mediators of development and regeneration of the sensory nervous system. Developmental neurobiology 71: 1054–1072. doi: 10.1002/dneu.20950
|
[120] | Kobayashi NR, Fan DP, Giehl KM, Bedard AM, Wiegand SJ, et al. (1997) BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Talpha1-tubulin mRNA expression, and promote axonal regeneration. The Journal of neuroscience: the official journal of the Society for Neuroscience 17: 9583–9595.
|
[121] | Ramon y Cajal S (1928) Degeneration and regeneration of the nervous system. May RM, translator; De Felipe J, Jones EG, editors: Oxford University Press.
|