[1] | Bonn S, Furlong EEM (2008) cis-Regulatory networks during development: a view of Drosophila. Curr Opin Genet Dev 18: 513–520 doi:10.1016/j.gde.2008.09.005.
|
[2] | Davidson EH, Levine MS (2008) Properties of developmental gene regulatory networks. Proc Natl Acad Sci USA 105: 20063–20066 doi:10.1073/pnas.0806007105.
|
[3] | Spitz F, Furlong EEM (2012) Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 13: 613–626 doi:10.1038/nrg3207.
|
[4] | Castanon I, Baylies MK (2002) A Twist in fate: evolutionary comparison of Twist structure and function. Gene 287: 11–22 doi:10.1016/S0378-1119(01)00893-9.
|
[5] | Bate M, Rushton E, Currie DA (1991) Cells with persistent twist expression are the embryonic precursors of adult muscles in Drosophila. Development 113: 79–89.
|
[6] | Simpson P (1983) Maternal-Zygotic Gene Interactions during Formation of the Dorsoventral Pattern in Drosophila Embryos. Genetics 105: 615–632.
|
[7] | Leptin M (1991) twist and snail as positive and negative regulators during Drosophila mesoderm development. Genes & Development 5: 1568–1576. doi: 10.1101/gad.5.9.1568
|
[8] | Kosman D, Ip YT, Levine M, Arora K (1991) Establishment of the mesoderm-neuroectoderm boundary in the Drosophila embryo. Science 254: 118–122. doi: 10.1126/science.1925551
|
[9] | Thisse B, Messal el M, Perrin-Schmitt F (1987) The twist gene: isolation of a Drosophila zygotic gene necessary for the establishment of dorsoventral pattern. Nucleic Acids Res 15: 3439–3453. doi: 10.1093/nar/15.8.3439
|
[10] | Pouille P-A, Ahmadi P, Brunet A-C, Farge E (2009) Mechanical signals trigger Myosin II redistribution and mesoderm invagination in Drosophila embryos. Sci Signal 2: ra16 doi:10.1126/scisignal.2000098.
|
[11] | Martin AC, Gelbart M, Fernandez-Gonzalez R, Kaschube M, Wieschaus EF (2010) Integration of contractile forces during tissue invagination. The Journal of Cell Biology 188: 735–749 doi:10.1083/jcb.200910099.
|
[12] | Stathopoulos A, Levine M (2002) Dorsal gradient networks in the Drosophila embryo. Dev Biol 246: 57–67 doi:10.1006/dbio.2002.0652.
|
[13] | Sandmann T, Girardot C, Brehme M, Tongprasit W, Stolc V, et al. (2007) A core transcriptional network for early mesoderm development in Drosophila melanogaster. Genes & Development 21: 436–449 doi:10.1101/gad.1509007.
|
[14] | Zeitlinger J, Zinzen RP, Stark A, Kellis M, Zhang H, et al. (2007) Whole-genome ChIP-chip analysis of Dorsal, Twist, and Snail suggests integration of diverse patterning processes in the Drosophila embryo. Genes & Development 21: 385–390 doi:10.1101/gad.1509607.
|
[15] | Azpiazu N, Frasch M (1993) tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes & Development 7: 1325–1340. doi: 10.1101/gad.7.7b.1325
|
[16] | Bodmer R (1993) The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 118: 719–729.
|
[17] | Cripps RM, Black BL, Zhao B, Lien CL, Schulz RA, et al. (1998) The myogenic regulatory gene Mef2 is a direct target for transcriptional activation by Twist during Drosophila myogenesis. Genes & Development 12: 422–434. doi: 10.1101/gad.12.3.422
|
[18] | Shishido E, Higashijima S, Emori Y, Saigo K (1993) Two FGF-receptor homologues of Drosophila: one is expressed in mesodermal primordium in early embryos. Development 117: 751–761.
|
[19] | Shishido E, Ono N, Kojima T, Saigo K (1997) Requirements of DFR1/Heartless, a mesoderm-specific Drosophila FGF-receptor, for the formation of heart, visceral and somatic muscles, and ensheathing of longitudinal axon tracts in CNS. Development 124: 2119–2128.
|
[20] | Beiman M, Shilo BZ, Volk T (1996) Heartless, a Drosophila FGF receptor homolog, is essential for cell migration and establishment of several mesodermal lineages. Genes & Development 10: 2993–3002. doi: 10.1101/gad.10.23.2993
|
[21] | Gisselbrecht S, Skeath JB, Doe CQ, Michelson AM (1996) heartless encodes a fibroblast growth factor receptor (DFR1/DFGF-R2) involved in the directional migration of early mesodermal cells in the Drosophila embryo. Genes & Development 10: 3003–3017. doi: 10.1101/gad.10.23.3003
|
[22] | Lilly B, Galewsky S, Firulli AB, Schulz RA, Olson EN (1994) D-MEF2: a MADS box transcription factor expressed in differentiating mesoderm and muscle cell lineages during Drosophila embryogenesis. Proc Natl Acad Sci USA 91: 5662–5666. doi: 10.1073/pnas.91.12.5662
|
[23] | Bour BA, O'Brien MA, Lockwood WL, Goldstein ES, Bodmer R, et al. (1995) Drosophila MEF2, a transcription factor that is essential for myogenesis. Genes & Development 9: 730–741. doi: 10.1101/gad.9.6.730
|
[24] | Taylor MV, Beatty KE, Hunter HK, Baylies MK (1995) Drosophila MEF2 is regulated by twist and is expressed in both the primordia and differentiated cells of the embryonic somatic, visceral and heart musculature. Mech Dev 50: 29–41. doi: 10.1016/0925-4773(94)00323-f
|
[25] | Rembold M, Ciglar L, Yá?ez-Cuna JO, Zinzen RP, Girardot C, et al.. (n.d.) A conserved role for Snail as a potentiator of active transcription. genesdevcshlporg.
|
[26] | Costa M, Wilson ET, Wieschaus E (1994) A putative cell signal encoded by the folded gastrulation gene coordinates cell shape changes during Drosophila gastrulation. Cell 76: 1075–1089. doi: 10.1016/0092-8674(94)90384-0
|
[27] | K?lsch V, Seher T, Fernandez-Ballester GJ, Serrano L, Leptin M (2007) Control of Drosophila gastrulation by apical localization of adherens junctions and RhoGEF2. Science 315: 384–386 doi:10.1126/science.1134833.
|
[28] | Mathew SJ, Rembold M, Leptin M (2011) Role for Traf4 in polarizing adherens junctions as a prerequisite for efficient cell shape changes. Mol Cell Biol 31: 4978–4993 doi:10.1128/MCB.05542-11.
|
[29] | Ip YT, Park RE, Kosman D, Bier E, Levine M (1992) The dorsal gradient morphogen regulates stripes of rhomboid expression in the presumptive neuroectoderm of the Drosophila embryo. Genes & Development 6: 1728–1739. doi: 10.1101/gad.6.9.1728
|
[30] | Leptin M, Grunewald B (1990) Cell shape changes during gastrulation in Drosophila. Development 110: 73–84.
|
[31] | Leptin M, Casal J, Grunewald B, Reuter R (1992) Mechanisms of early Drosophila mesoderm formation. Dev Suppl: 23–31.
|
[32] | Knust E, Leptin M (1996) Adherens junctions in the Drosophila embryo: the role of E-cadherin in their establishment and morphogenetic function. Bioessays 18: 609–612 doi:10.1002/bies.950180802.
|
[33] | Grosshans J, Wieschaus E (2000) A genetic link between morphogenesis and cell division during formation of the ventral furrow in Drosophila. Cell 101: 523–531. doi: 10.1016/s0092-8674(00)80862-4
|
[34] | Nabel-Rosen H, Toledano-Katchalski H, Volohonsky G, Volk T (2005) Cell divisions in the drosophila embryonic mesoderm are repressed via posttranscriptional regulation of string/cdc25 by HOW. Curr Biol 15: 295–302 doi:10.1016/j.cub.2005.01.045.
|
[35] | Seher TC, Narasimha M, Vogelsang E, Leptin M (2007) Analysis and reconstitution of the genetic cascade controlling early mesoderm morphogenesis in the Drosophila embryo. Mech Dev 124: 167–179 doi:10.1016/j.mod.2006.12.004.
|
[36] | Zeitlinger J, Stark A, Kellis M, Hong J-W, Nechaev S, et al. (2007) RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat Genet 39: 1512–1516 doi:10.1038/ng.2007.26.
|
[37] | Ip YT, Park RE, Kosman D, Yazdanbakhsh K, Levine M (1992) dorsal-twist interactions establish snail expression in the presumptive mesoderm of the Drosophila embryo. Genes & Development 6: 1518–1530. doi: 10.1101/gad.6.8.1518
|
[38] | Kophengnavong T, Michnowicz JE, Blackwell TK (2000) Establishment of distinct MyoD, E2A, and twist DNA binding specificities by different basic region-DNA conformations. Mol Cell Biol 20: 261–272. doi: 10.1128/mcb.20.1.261-272.2000
|
[39] | Castanon I, Stetina Von S, Kass J, Baylies MK (2001) Dimerization partners determine the activity of the Twist bHLH protein during Drosophila mesoderm development. Development 128: 3145–3159.
|
[40] | Wong M-C, Castanon I, Baylies MK (2008) Daughterless dictates Twist activity in a context-dependent manner during somatic myogenesis. Dev Biol 317: 417–429 doi:10.1016/j.ydbio.2008.02.020.
|
[41] | Bernard F, Krejci A, Housden B, Adryan B, Bray SJ (2010) Specificity of Notch pathway activation: twist controls the transcriptional output in adult muscle progenitors. Development 137: 2633–2642 doi:10.1242/dev.053181.
|
[42] | Nowak SJ, Aihara H, Gonzalez K, Nibu Y, Baylies MK (2012) Akirin links twist-regulated transcription with the Brahma chromatin remodeling complex during embryogenesis. PLoS Genet 8: e1002547 doi:10.1371/journal.pgen.1002547.
|
[43] | González-Crespo S, Levine M, (n.d.) Interactions between dorsal and helix-loop-helix proteins initiate the differentiation of the embryonic mesoderm and neuroectoderm in Drosophila.
|
[44] | Wilson R, Vogelsang E, Leptin M (2005) FGF signalling and the mechanism of mesoderm spreading in Drosophila embryos. Development 132: 491–501 doi:10.1242/dev.01603.
|
[45] | Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118: 401–415.
|
[46] | Seher TC, Leptin M (2000) Tribbles, a cell-cycle brake that coordinates proliferation and morphogenesis during Drosophila gastrulation. Curr Biol 10: 623–629. doi: 10.1016/s0960-9822(00)00502-9
|
[47] | Shiota M, Izumi H, Onitsuka T, Miyamoto N, Kashiwagi E, et al. (2008) Twist promotes tumor cell growth through YB-1 expression. Cancer Res 68: 98–105 doi:10.1158/0008-5472.CAN-07-2981.
|
[48] | Isenmann S, Arthur A, Zannettino ACW, Turner JL, Shi S, et al. (2009) TWIST family of basic helix-loop-helix transcription factors mediate human mesenchymal stem cell growth and commitment. Stem Cells 27: 2457–2468 doi:10.1002/stem.181.
|
[49] | Park KW, Hong J-W (2012) Mesodermal repression of single-minded in Drosophila embryo is mediated by a cluster of Snail-binding sites proximal to the early promoter. BMB Rep 45: 577–582. doi: 10.5483/bmbrep.2012.45.10.105
|
[50] | Zheng H, Kang Y (2013) Multilayer control of the EMT master regulators. Oncogene. doi:10.1038/onc.2013.128.
|
[51] | Sánchez-Tilló E, Liu Y, Barrios O, Siles L, Fanlo L, et al. (2012) EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. 69: 3429–3456 doi:10.1007/s00018-012-1122-2.
|
[52] | Hoek K, Rimm DL, Williams KR, Zhao H, Ariyan S, et al. (2004) Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Res 64: 5270–5282 doi:10.1158/0008-5472.CAN-04-0731.
|
[53] | Kwok WK, Ling M-T, Lee T-W, Lau TCM, Zhou C, et al. (2005) Up-regulation of TWIST in prostate cancer and its implication as a therapeutic target. Cancer Res 65: 5153–5162 doi:10.1158/0008-5472.CAN-04-3785.
|
[54] | Kyo S, Sakaguchi J, Ohno S, Mizumoto Y, Maida Y, et al. (2006) High Twist expression is involved in infiltrative endometrial cancer and affects patient survival. Hum Pathol 37: 431–438 doi:10.1016/j.humpath.2005.12.021.
|
[55] | Baylies MK, Martinez Arias A, Bate M (1995) wingless is required for the formation of a subset of muscle founder cells during Drosophila embryogenesis. Development 121: 3829–3837.
|
[56] | Baylies MK, Bate M (1996) twist: a myogenic switch in Drosophila. Science 272: 1481–1484. doi: 10.1126/science.272.5267.1481
|
[57] | Yagi Y, Hayashi S (1997) Role of the Drosophila EGF receptor in determination of the dorsoventral domains of escargot expression during primary neurogenesis. Genes Cells 2: 41–53. doi: 10.1046/j.1365-2443.1997.d01-282.x
|
[58] | Halfon MS, Carmena A, Gisselbrecht S, Sackerson CM, Jiménez F, et al. (2000) Ras pathway specificity is determined by the integration of multiple signal-activated and tissue-restricted transcription factors. Cell 103: 63–74. doi: 10.1016/s0092-8674(00)00105-7
|
[59] | Lin MH, Bour BA, Abmayr SM, Storti RV (1997) Ectopic expression of MEF2 in the epidermis induces epidermal expression of muscle genes and abnormal muscle development in Drosophila. Dev Biol 182: 240–255 doi:10.1006/dbio.1996.8484.
|
[60] | Artero R, Furlong EE, Beckett K, Scott MP, Baylies M (2003) Notch and Ras signaling pathway effector genes expressed in fusion competent and founder cells during Drosophila myogenesis. Development 130: 6257–6272 doi:10.1242/dev.00843.
|
[61] | Medema JP (2013) Cancer stem cells: the challenges ahead. Nat Cell Bio 15: 388–44 doi:10.1038/ncb2717.
|