全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

DTAF Dye Concentrations Commonly Used to Measure Microscale Deformations in Biological Tissues Alter Tissue Mechanics

DOI: 10.1371/journal.pone.0099588

Full-Text   Cite this paper   Add to My Lib

Abstract:

Identification of the deformation mechanisms and specific components underlying the mechanical function of biological tissues requires mechanical testing at multiple levels within the tissue hierarchical structure. Dichlorotriazinylaminofluorescein (DTAF) is a fluorescent dye that is used to visualize microscale deformations of the extracellular matrix in soft collagenous tissues. However, the DTAF concentrations commonly employed in previous multiscale experiments (≥2000 μg/ml) may alter tissue mechanics. The objective of this study was to determine whether DTAF affects tendon fascicle mechanics and if a concentration threshold exists below which any observed effects are negligible. This information is valuable for guiding the continued use of this fluorescent dye in future experiments and for interpreting the results of previous work. Incremental strain testing demonstrated that high DTAF concentrations (≥100 μg/ml) increase the quasi-static modulus and yield strength of rat tail tendon fascicles while reducing their viscoelastic behavior. Subsequent multiscale testing and modeling suggests that these effects are due to a stiffening of the collagen fibrils and strengthening of the interfibrillar matrix. Despite these changes in tissue behavior, the fundamental deformation mechanisms underlying fascicle mechanics appear to remain intact, which suggests that conclusions from previous multiscale investigations of strain transfer are still valid. The effects of lower DTAF concentrations (≤10 μg/ml) on tendon mechanics were substantially smaller and potentially negligible; nevertheless, no concentration was found that did not at least slightly alter the tissue behavior. Therefore, future studies should either reduce DTAF concentrations as much as possible or use other dyes/techniques for measuring microscale deformations.

References

[1]  Screen HRC, Lee DA, Bader DL, Shelton JC (2004) An investigation into the effects of the hierarchical structure of tendon fascicles on micromechanical properties. Proc Inst Mech Eng H 218: 109–119. doi: 10.1243/095441104322984004
[2]  Puxkandl R, Zizak I, Paris O, Keckes J, Tesch W, et al. (2002) Viscoelastic properties of collagen: synchrotron radiation investigations and structural model. Proc R Soc B 357: 191–197 doi:10.1098/rstb.2001.1033.
[3]  Gupta HS, Seto J, Wagermaier W, Zaslansky P, Boesecke P, et al. (2006) Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc Natl Acad Sci U S A 103: 17741–17746 doi:10.1073/pnas.0604237103.
[4]  Rigozzi S, Müller R, Stemmer A, Snedeker JG (2013) Tendon glycosaminoglycan proteoglycan sidechains promote collagen fibril sliding-AFM observations at the nanoscale. J Biomech 46: 813–818 doi:10.1016/j.jbiomech.2012.11.017.
[5]  Liao J, Yang L, Grashow J, Sacks MS (2007) The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet. J Biomech Eng 129: 78–87 doi:10.1115/1.2401186.
[6]  Masic A, Bertinetti L, Schuetz R, Galvis L, Timofeeva N, et al. (2011) Observations of multiscale, stress-induced changes of collagen orientation in tendon by polarized Raman spectroscopy. Biomacromolecules 12: 3989–3996 doi:10.1021/bm201008b.
[7]  Hagenau A, Papadopoulos P, Kremer F, Scheibel T (2011) Mussel collagen molecules with silk-like domains as load-bearing elements in distal byssal threads. J Struct Biol 175: 339–347 doi:10.1016/j.jsb.2011.05.016.
[8]  Buckley MR, Bergou AJ, Fouchard J, Bonassar LJ, Cohen I (2010) High-resolution spatial mapping of shear properties in cartilage. J Biomech 43: 796–800 doi:10.1016/j.jbiomech.2009.10.012.
[9]  Bruehlmann SB, Matyas JR, Duncan NA (2004) ISSLS prize winner: Collagen fibril sliding governs cell mechanics in the anulus fibrosus: an in situ confocal microscopy study of bovine discs. Spine 29: 2612–2620. doi: 10.1097/01.brs.0000146465.05972.56
[10]  Upton ML, Gilchrist CL, Guilak F, Setton LA (2008) Transfer of macroscale tissue strain to microscale cell regions in the deformed meniscus. Biophys J 95: 2116–2124 doi:10.1529/biophysj.107.126938.
[11]  Han WM, Heo S-J, Driscoll TP, Smith LJ, Mauck RL, et al. (2013) Macro- to microscale strain transfer in fibrous tissues is heterogeneous and tissue-specific. Biophys J 105: 807–817 doi:10.1016/j.bpj.2013.06.023.
[12]  Arnoczky SP, Lavagnino M, Whallon JH, Hoonjan A (2002) In situ cell nucleus deformation in tendons under tensile load; a morphological analysis using confocal laser microscopy. J Orthop Res 20: 29–35 doi:10.1016/S0736-0266(01)00080-8.
[13]  Wall ME, Weinhold PS, Siu T, Brown TD, Banes AJ (2007) Comparison of cellular strain with applied substrate strain in vitro. J Biomech 40: 173–181 doi:10.1016/j.jbiomech.2005.10.032.
[14]  Stella JA, Liao J, Hong Y, David Merryman W, Wagner WR, et al. (2008) Tissue-to-cellular level deformation coupling in cell micro-integrated elastomeric scaffolds. Biomaterials 29: 3228–3236 doi:10.1016/j.biomaterials.2008.04.029.
[15]  Davison PF, Galbavy EJ (1985) Fluorescent dyes demonstrate the uniform expansion of the growing rabbit cornea. Invest Ophthalmol Vis Sci 26: 1202–1209.
[16]  Wood ML, Lester GE, Dahners LE (1998) Collagen fiber sliding during ligament growth and contracture. J Orthop Res 16: 438–440 doi:10.1002/jor.1100160407.
[17]  Michalek AJ, Buckley MR, Bonassar LJ, Cohen I, Iatridis JC (2009) Measurement of local strains in intervertebral disc anulus fibrosus tissue under dynamic shear: contributions of matrix fiber orientation and elastin content. J Biomech 42: 2279–2285 doi:10.1016/j.jbiomech.2009.06.047.
[18]  Duncan NA, Bruehlmann SB, Hunter CJ, Shao X, Kelly EJ (2014) In situ cell–matrix mechanics in tendon fascicles and seeded collagen gels: implications for the multiscale design of biomaterials. Comput Methods Biomech Biomed Engin 17: 39–47 doi:10.1080/10255842.2012.742075.
[19]  Cheng V, Screen H (2007) The micro-structural strain response of tendon. J Mater Sci 42: 8957–8965 doi:10.1007/s10853-007-1653-3.
[20]  Thorpe CT, Klemt C, Riley GP, Birch HL, Clegg PD, et al. (2013) Helical sub-structures in energy-storing tendons provide a possible mechanism for efficient energy storage and return. Acta Biomater 9: 7948–7956 doi:10.1016/j.actbio.2013.05.004.
[21]  Thorpe CT, Riley GP, Birch HL, Clegg PD, Screen HRC (2014) Fascicles from energy-storing tendons show an age-specific response to cyclic fatigue loading. J R Soc Interface 11: 20131058 doi:10.1098/rsif.2013.1058.
[22]  Szczesny SE, Elliott DM (2014) Interfibrillar Shear Stress is the Loading Mechanism of Collagen Fibrils in Tendon. Acta Biomater 10: 2582–2590 doi:10.1016/j.actbio.2014.01.032.
[23]  Desrochers J, Duncan NA (2010) Strain transfer in the annulus fibrosus under applied flexion. J Biomech 43: 2141–2148 doi:10.1016/j.jbiomech.2010.03.045.
[24]  Blakeslee D, Baines MG (1976) Immunofluorescence using dichlorotriazinylaminofluorescein (DTAF). I. Preparation and fractionation of labelled IgG. J Immunol Methods 13: 305–320. doi: 10.1016/0022-1759(76)90078-8
[25]  Smolin EM, Rapoport L (1959) s-Triazines and Derivatives. New York: Interscience Publishers, Inc. 644 p.
[26]  Huyghe JM, Jongeneelen CJM (2012) 3D non-affine finite strains measured in isolated bovine annulus fibrosus tissue samples. Biomech Model Mechanobiol 11: 161–170 doi:10.1007/s10237-011-0300-8.
[27]  Li Y, Fessel G, Georgiadis M, Snedeker JG (2013) Advanced glycation end-products diminish tendon collagen fiber sliding. Matrix Biol 32: 169–177 doi:10.1016/j.matbio.2013.01.003.
[28]  Gupta HS, Seto J, Krauss S, Boesecke P, Screen HRC (2010) In situ multi-level analysis of viscoelastic deformation mechanisms in tendon collagen. J Struct Biol 169: 183–191 doi:10.1016/j.jsb.2009.10.002.
[29]  Nemetschek T, Jelinek K, Kn?rzer E, Mosler E, Nemetschek-Gansler H, et al. (1983) Transformation of the structure of collagen. A time-resolved analysis of mechanochemical processes using synchrotron radiation. J Mol Biol 167: 461–479. doi: 10.1016/s0022-2836(83)80345-3
[30]  Mosler E, Folkhard W, Kn?rzer E, Nemetschek-Gansler H, Nemetschek T, et al. (1985) Stress-induced molecular rearrangement in tendon collagen. J Mol Biol 182: 589–596. doi: 10.1016/0022-2836(85)90244-x
[31]  Kastelic J, Galeski A, Baer E (1978) The multicomposite structure of tendon. Connect Tissue Res 6: 11–23. doi: 10.3109/03008207809152283
[32]  Rowe RW (1985) The structure of rat tail tendon. Connect Tissue Res 14: 9–20. doi: 10.3109/03008208509089839
[33]  Tanaka ML, Weisenbach CA, Carl Miller M, Kuxhaus L (2011) A continuous method to compute model parameters for soft biological materials. J Biomech Eng 133: 074502 doi:10.1115/1.4004412.
[34]  Shen ZL, Dodge MR, Kahn H, Ballarini R, Eppell SJ (2010) In vitro fracture testing of submicron diameter collagen fibril specimens. Biophys J 99: 1986–1995 doi:10.1016/j.bpj.2010.07.021.
[35]  Yang L, van der Werf KO, Dijkstra PJ, Feijen J, Bennink ML (2012) Micromechanical analysis of native and cross-linked collagen type I fibrils supports the existence of microfibrils. J Mech Behav Biomed Mater 6: 148–158 doi:10.1016/j.jmbbm.2011.11.008.
[36]  Gautieri A, Vesentini S, Redaelli A, Buehler MJ (2011) Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett 11: 757–766 doi:10.1021/nl103943u.
[37]  Sasaki N, Odajima S (1996) Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. J Biomech 29: 1131–1136. doi: 10.1016/0021-9290(96)00024-3
[38]  Hansen P, Hassenkam T, Svensson RB, Aagaard P, Trappe T, et al. (2009) Glutaraldehyde cross-linking of tendon—mechanical effects at the level of the tendon fascicle and fibril. Connect Tissue Res 50: 211–222 doi:10.1080/03008200802610040.
[39]  Van der Rijt JAJ, van der Werf KO, Bennink ML, Dijkstra PJ, Feijen J (2006) Micromechanical testing of individual collagen fibrils. Macromol Biosci 6: 697–702 doi:10.1002/mabi.200600063.
[40]  Svensson RB, Mulder H, Kovanen V, Magnusson SP (2013) Fracture mechanics of collagen fibrils: influence of natural cross-links. Biophys J 104: 2476–2484 doi:10.1016/j.bpj.2013.04.033.
[41]  Sasaki N, Shukunami N, Matsushima N, Izumi Y (1999) Time-resolved X-ray diffraction from tendon collagen during creep using synchrotron radiation. J Biomech 32: 285–292. doi: 10.1016/s0021-9290(98)00174-2
[42]  Clemmer J, Liao J, Davis D, Horstemeyer MF, Williams LN (2010) A mechanistic study for strain rate sensitivity of rabbit patellar tendon. J Biomech 43: 2785–2791 doi:10.1016/j.jbiomech.2010.06.009.
[43]  Screen HRC, Toorani S, Shelton JC (2013) Microstructural stress relaxation mechanics in functionally different tendons. Med Eng Phys 35: 96–102 doi:10.1016/j.medengphy.2012.04.004.
[44]  De Belder AN, Granath K (1973) Preparation and properties of fluorescein-labelled dextrans. Carbohydr Res 30: 375–378. doi: 10.1016/s0008-6215(00)81824-8
[45]  Hermanson GT (2013) Bioconjugate Techniques. 3rd ed. New York: Academic Press. 1146 p.
[46]  Thorpe CT, Udeze CP, Birch HL, Clegg PD, Screen HRC (2012) Specialization of tendon mechanical properties results from interfascicular differences. J R Soc Interface 9: 3108–3117 doi:10.1098/rsif.2012.0362.
[47]  Krahn KN, Bouten CVC, van Tuijl S, van Zandvoort MAMJ, Merkx M (2006) Fluorescently labeled collagen binding proteins allow specific visualization of collagen in tissues and live cell culture. Anal Biochem 350: 177–185 doi:10.1016/j.ab.2006.01.013.
[48]  Jayyosi C, Fargier G, Coret M, Bruyère-Garnier K (2014) Photobleaching as a tool to measure the local strain field in fibrous membranes of connective tissues. Acta Biomater 10: 2591–2601 doi:10.1016/j.actbio.2014.02.031.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133