[1] | Screen HRC, Lee DA, Bader DL, Shelton JC (2004) An investigation into the effects of the hierarchical structure of tendon fascicles on micromechanical properties. Proc Inst Mech Eng H 218: 109–119. doi: 10.1243/095441104322984004
|
[2] | Puxkandl R, Zizak I, Paris O, Keckes J, Tesch W, et al. (2002) Viscoelastic properties of collagen: synchrotron radiation investigations and structural model. Proc R Soc B 357: 191–197 doi:10.1098/rstb.2001.1033.
|
[3] | Gupta HS, Seto J, Wagermaier W, Zaslansky P, Boesecke P, et al. (2006) Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc Natl Acad Sci U S A 103: 17741–17746 doi:10.1073/pnas.0604237103.
|
[4] | Rigozzi S, Müller R, Stemmer A, Snedeker JG (2013) Tendon glycosaminoglycan proteoglycan sidechains promote collagen fibril sliding-AFM observations at the nanoscale. J Biomech 46: 813–818 doi:10.1016/j.jbiomech.2012.11.017.
|
[5] | Liao J, Yang L, Grashow J, Sacks MS (2007) The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet. J Biomech Eng 129: 78–87 doi:10.1115/1.2401186.
|
[6] | Masic A, Bertinetti L, Schuetz R, Galvis L, Timofeeva N, et al. (2011) Observations of multiscale, stress-induced changes of collagen orientation in tendon by polarized Raman spectroscopy. Biomacromolecules 12: 3989–3996 doi:10.1021/bm201008b.
|
[7] | Hagenau A, Papadopoulos P, Kremer F, Scheibel T (2011) Mussel collagen molecules with silk-like domains as load-bearing elements in distal byssal threads. J Struct Biol 175: 339–347 doi:10.1016/j.jsb.2011.05.016.
|
[8] | Buckley MR, Bergou AJ, Fouchard J, Bonassar LJ, Cohen I (2010) High-resolution spatial mapping of shear properties in cartilage. J Biomech 43: 796–800 doi:10.1016/j.jbiomech.2009.10.012.
|
[9] | Bruehlmann SB, Matyas JR, Duncan NA (2004) ISSLS prize winner: Collagen fibril sliding governs cell mechanics in the anulus fibrosus: an in situ confocal microscopy study of bovine discs. Spine 29: 2612–2620. doi: 10.1097/01.brs.0000146465.05972.56
|
[10] | Upton ML, Gilchrist CL, Guilak F, Setton LA (2008) Transfer of macroscale tissue strain to microscale cell regions in the deformed meniscus. Biophys J 95: 2116–2124 doi:10.1529/biophysj.107.126938.
|
[11] | Han WM, Heo S-J, Driscoll TP, Smith LJ, Mauck RL, et al. (2013) Macro- to microscale strain transfer in fibrous tissues is heterogeneous and tissue-specific. Biophys J 105: 807–817 doi:10.1016/j.bpj.2013.06.023.
|
[12] | Arnoczky SP, Lavagnino M, Whallon JH, Hoonjan A (2002) In situ cell nucleus deformation in tendons under tensile load; a morphological analysis using confocal laser microscopy. J Orthop Res 20: 29–35 doi:10.1016/S0736-0266(01)00080-8.
|
[13] | Wall ME, Weinhold PS, Siu T, Brown TD, Banes AJ (2007) Comparison of cellular strain with applied substrate strain in vitro. J Biomech 40: 173–181 doi:10.1016/j.jbiomech.2005.10.032.
|
[14] | Stella JA, Liao J, Hong Y, David Merryman W, Wagner WR, et al. (2008) Tissue-to-cellular level deformation coupling in cell micro-integrated elastomeric scaffolds. Biomaterials 29: 3228–3236 doi:10.1016/j.biomaterials.2008.04.029.
|
[15] | Davison PF, Galbavy EJ (1985) Fluorescent dyes demonstrate the uniform expansion of the growing rabbit cornea. Invest Ophthalmol Vis Sci 26: 1202–1209.
|
[16] | Wood ML, Lester GE, Dahners LE (1998) Collagen fiber sliding during ligament growth and contracture. J Orthop Res 16: 438–440 doi:10.1002/jor.1100160407.
|
[17] | Michalek AJ, Buckley MR, Bonassar LJ, Cohen I, Iatridis JC (2009) Measurement of local strains in intervertebral disc anulus fibrosus tissue under dynamic shear: contributions of matrix fiber orientation and elastin content. J Biomech 42: 2279–2285 doi:10.1016/j.jbiomech.2009.06.047.
|
[18] | Duncan NA, Bruehlmann SB, Hunter CJ, Shao X, Kelly EJ (2014) In situ cell–matrix mechanics in tendon fascicles and seeded collagen gels: implications for the multiscale design of biomaterials. Comput Methods Biomech Biomed Engin 17: 39–47 doi:10.1080/10255842.2012.742075.
|
[19] | Cheng V, Screen H (2007) The micro-structural strain response of tendon. J Mater Sci 42: 8957–8965 doi:10.1007/s10853-007-1653-3.
|
[20] | Thorpe CT, Klemt C, Riley GP, Birch HL, Clegg PD, et al. (2013) Helical sub-structures in energy-storing tendons provide a possible mechanism for efficient energy storage and return. Acta Biomater 9: 7948–7956 doi:10.1016/j.actbio.2013.05.004.
|
[21] | Thorpe CT, Riley GP, Birch HL, Clegg PD, Screen HRC (2014) Fascicles from energy-storing tendons show an age-specific response to cyclic fatigue loading. J R Soc Interface 11: 20131058 doi:10.1098/rsif.2013.1058.
|
[22] | Szczesny SE, Elliott DM (2014) Interfibrillar Shear Stress is the Loading Mechanism of Collagen Fibrils in Tendon. Acta Biomater 10: 2582–2590 doi:10.1016/j.actbio.2014.01.032.
|
[23] | Desrochers J, Duncan NA (2010) Strain transfer in the annulus fibrosus under applied flexion. J Biomech 43: 2141–2148 doi:10.1016/j.jbiomech.2010.03.045.
|
[24] | Blakeslee D, Baines MG (1976) Immunofluorescence using dichlorotriazinylaminofluorescein (DTAF). I. Preparation and fractionation of labelled IgG. J Immunol Methods 13: 305–320. doi: 10.1016/0022-1759(76)90078-8
|
[25] | Smolin EM, Rapoport L (1959) s-Triazines and Derivatives. New York: Interscience Publishers, Inc. 644 p.
|
[26] | Huyghe JM, Jongeneelen CJM (2012) 3D non-affine finite strains measured in isolated bovine annulus fibrosus tissue samples. Biomech Model Mechanobiol 11: 161–170 doi:10.1007/s10237-011-0300-8.
|
[27] | Li Y, Fessel G, Georgiadis M, Snedeker JG (2013) Advanced glycation end-products diminish tendon collagen fiber sliding. Matrix Biol 32: 169–177 doi:10.1016/j.matbio.2013.01.003.
|
[28] | Gupta HS, Seto J, Krauss S, Boesecke P, Screen HRC (2010) In situ multi-level analysis of viscoelastic deformation mechanisms in tendon collagen. J Struct Biol 169: 183–191 doi:10.1016/j.jsb.2009.10.002.
|
[29] | Nemetschek T, Jelinek K, Kn?rzer E, Mosler E, Nemetschek-Gansler H, et al. (1983) Transformation of the structure of collagen. A time-resolved analysis of mechanochemical processes using synchrotron radiation. J Mol Biol 167: 461–479. doi: 10.1016/s0022-2836(83)80345-3
|
[30] | Mosler E, Folkhard W, Kn?rzer E, Nemetschek-Gansler H, Nemetschek T, et al. (1985) Stress-induced molecular rearrangement in tendon collagen. J Mol Biol 182: 589–596. doi: 10.1016/0022-2836(85)90244-x
|
[31] | Kastelic J, Galeski A, Baer E (1978) The multicomposite structure of tendon. Connect Tissue Res 6: 11–23. doi: 10.3109/03008207809152283
|
[32] | Rowe RW (1985) The structure of rat tail tendon. Connect Tissue Res 14: 9–20. doi: 10.3109/03008208509089839
|
[33] | Tanaka ML, Weisenbach CA, Carl Miller M, Kuxhaus L (2011) A continuous method to compute model parameters for soft biological materials. J Biomech Eng 133: 074502 doi:10.1115/1.4004412.
|
[34] | Shen ZL, Dodge MR, Kahn H, Ballarini R, Eppell SJ (2010) In vitro fracture testing of submicron diameter collagen fibril specimens. Biophys J 99: 1986–1995 doi:10.1016/j.bpj.2010.07.021.
|
[35] | Yang L, van der Werf KO, Dijkstra PJ, Feijen J, Bennink ML (2012) Micromechanical analysis of native and cross-linked collagen type I fibrils supports the existence of microfibrils. J Mech Behav Biomed Mater 6: 148–158 doi:10.1016/j.jmbbm.2011.11.008.
|
[36] | Gautieri A, Vesentini S, Redaelli A, Buehler MJ (2011) Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett 11: 757–766 doi:10.1021/nl103943u.
|
[37] | Sasaki N, Odajima S (1996) Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. J Biomech 29: 1131–1136. doi: 10.1016/0021-9290(96)00024-3
|
[38] | Hansen P, Hassenkam T, Svensson RB, Aagaard P, Trappe T, et al. (2009) Glutaraldehyde cross-linking of tendon—mechanical effects at the level of the tendon fascicle and fibril. Connect Tissue Res 50: 211–222 doi:10.1080/03008200802610040.
|
[39] | Van der Rijt JAJ, van der Werf KO, Bennink ML, Dijkstra PJ, Feijen J (2006) Micromechanical testing of individual collagen fibrils. Macromol Biosci 6: 697–702 doi:10.1002/mabi.200600063.
|
[40] | Svensson RB, Mulder H, Kovanen V, Magnusson SP (2013) Fracture mechanics of collagen fibrils: influence of natural cross-links. Biophys J 104: 2476–2484 doi:10.1016/j.bpj.2013.04.033.
|
[41] | Sasaki N, Shukunami N, Matsushima N, Izumi Y (1999) Time-resolved X-ray diffraction from tendon collagen during creep using synchrotron radiation. J Biomech 32: 285–292. doi: 10.1016/s0021-9290(98)00174-2
|
[42] | Clemmer J, Liao J, Davis D, Horstemeyer MF, Williams LN (2010) A mechanistic study for strain rate sensitivity of rabbit patellar tendon. J Biomech 43: 2785–2791 doi:10.1016/j.jbiomech.2010.06.009.
|
[43] | Screen HRC, Toorani S, Shelton JC (2013) Microstructural stress relaxation mechanics in functionally different tendons. Med Eng Phys 35: 96–102 doi:10.1016/j.medengphy.2012.04.004.
|
[44] | De Belder AN, Granath K (1973) Preparation and properties of fluorescein-labelled dextrans. Carbohydr Res 30: 375–378. doi: 10.1016/s0008-6215(00)81824-8
|
[45] | Hermanson GT (2013) Bioconjugate Techniques. 3rd ed. New York: Academic Press. 1146 p.
|
[46] | Thorpe CT, Udeze CP, Birch HL, Clegg PD, Screen HRC (2012) Specialization of tendon mechanical properties results from interfascicular differences. J R Soc Interface 9: 3108–3117 doi:10.1098/rsif.2012.0362.
|
[47] | Krahn KN, Bouten CVC, van Tuijl S, van Zandvoort MAMJ, Merkx M (2006) Fluorescently labeled collagen binding proteins allow specific visualization of collagen in tissues and live cell culture. Anal Biochem 350: 177–185 doi:10.1016/j.ab.2006.01.013.
|
[48] | Jayyosi C, Fargier G, Coret M, Bruyère-Garnier K (2014) Photobleaching as a tool to measure the local strain field in fibrous membranes of connective tissues. Acta Biomater 10: 2591–2601 doi:10.1016/j.actbio.2014.02.031.
|