Streptococcus pneumoniae still causes severe morbidity and mortality worldwide, especially in young children and the elderly. Much effort has been dedicated to developing protein-based universal vaccines to conquer the current shortcomings of capsular vaccines and capsular conjugate vaccines, such as serotype replacement, limited coverage and high costs. A recombinant live vector vaccine delivering protective antigens is a promising way to achieve this goal. In this review, we discuss the researches using live recombinant vaccines, mainly live attenuated Salmonella and lactic acid bacteria, to deliver pneumococcal antigens. We also discuss both the limitations and the future of these vaccines.
References
[1]
O’Brien, K.L.; Wolfson, L.J.; Watt, J.P.; Henkle, E.; Deloria-Knoll, M.; McCall, N.; Lee, E.; Mulholland, K.; Levine, O.S.; Cherian, T. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: Global estimates. Lancet 2009, 374, 893–902, doi:10.1016/S0140-6736(09)61204-6.
[2]
Blasi, F.; Mantero, M.; Santus, P.; Tarsia, P. Understanding the burden of pneumococcal disease in adults. Clin. Microbiol. Infect. 2012, 18, 7–14, doi:10.1111/j.1469-0691.2012.03937.x.
[3]
Welte, T.; Torres, A.; Nathwani, D. Clinical and economic burden of community-acquired pneumonia among adults in Europe. Thorax 2012, 67, 71–79, doi:10.1136/thx.2009.129502.
[4]
Huang, S.S.; Johnson, K.M.; Ray, G.T.; Wroe, P.; Lieu, T.A.; Moore, M.R.; Zell, E.R.; Linder, J.A.; Grijalva, C.G.; Metlay, J.P.; et al. Healthcare utilization and cost of pneumococcal disease in the United States. Vaccine 2011, 29, 3398–3412, doi:10.1016/j.vaccine.2011.02.088.
[5]
Weycker, D.; Strutton, D.; Edelsberg, J.; Sato, R.; Jackson, L.A. Clinical and economic burden of pneumococcal disease in older US adults. Vaccine 2010, 28, 4955–4960, doi:10.1016/j.vaccine.2010.05.030.
[6]
Moffitt, K.L.; Malley, R. Next generation pneumococcal vaccines. Curr. Opin. Immunol. 2011, 23, 407–413, doi:10.1016/j.coi.2011.04.002.
[7]
Pittet, L.F.; Posfay-Barbe, K.M. Pneumococcal vaccines for children: A global public health priority. Clin. Microbiol. Infect. 2012, 18, 25–36.
Malley, R. Antibody and cell-mediated immunity to Streptococcus pneumoniae: Implications for vaccine development. J. Mol. Med. 2010, 88, 135–142, doi:10.1007/s00109-009-0579-4.
Fine, M.J.; Smith, M.A.; Carson, C.A.; Meffe, F.; Sankey, S.S.; Weissfeld, L.A.; Detsky, A.S.; Kapoor, W.N. Efficacy of pneumococcal vaccination in adults. A meta-analysis of randomized controlled trials. Arch. Intern. Med. 1994, 154, 2666–2677.
[13]
Huss, A.; Scott, P.; Stuck, A.E.; Trotter, C.; Egger, M. Efficacy of pneumococcal vaccination in adults: A meta-analysis. Can. Med. Assoc. J. 2009, 180, 48–58, doi:10.1503/cmaj.080734.
[14]
Avci, F.Y.; Li, X.; Tsuji, M.; Kasper, D.L. A mechanism for glycoconjugate vaccine activation of the adaptive immune system and its implications for vaccine design. Nat. Med. 2011, 17, 1602–1609, doi:10.1038/nm.2535.
[15]
De Roux, A.; Schmole-Thoma, B.; Siber, G.R.; Hackell, J.G.; Kuhnke, A.; Ahlers, N.; Baker, S.A.; Razmpour, A.; Emini, E.A.; Fernsten, P.D.; et al. Comparison of pneumococcal conjugate polysaccharide and free polysaccharide vaccines in elderly adults: Conjugate vaccine elicits improved antibacterial immune responses and immunological memory. Clin. Infect. Dis. 2008, 46, 1015–1023, doi:10.1086/529142.
[16]
Musher, D.M.; Manof, S.B.; Liss, C.; McFetridge, R.D.; Marchese, R.D.; Bushnell, B.; Alvarez, F.; Painter, C.; Blum, M.D.; Silber, J.L. Safety and antibody response, including antibody persistence for 5 years, after primary vaccination or revaccination with pneumococcal polysaccharide vaccine in middle-aged and older adults. J. Infect. Dis. 2010, 201, 516–524, doi:10.1086/649839.
[17]
Nunes, M.C.; Madhi, S.A. Review on the immunogenicity and safety of PCV-13 in infants and toddlers. Expert Rev. Vaccines 2011, 10, 951–980, doi:10.1586/erv.11.76.
[18]
Pilishvili, T.; Lexau, C.; Farley, M.M.; Hadler, J.; Harrison, L.H.; Bennett, N.M.; Reingold, A.; Thomas, A.; Schaffner, W.; Craig, A.S.; et al. Sustained reductions in invasive pneumococcal disease in the era of conjugate vaccine. J. Infect. Dis. 2010, 201, 32–41, doi:10.1086/648593.
[19]
Poehling, K.A.; Talbot, T.R.; Griffin, M.R.; Craig, A.S.; Whitney, C.G.; Zell, E.; Lexau, C.A.; Thomas, A.R.; Harrison, L.H.; Reingold, A.L.; et al. Invasive pneumococcal disease among infants before and after introduction of pneumococcal conjugate vaccine. JAMA 2006, 295, 1668–1674, doi:10.1001/jama.295.14.1668.
[20]
Centers for Disease Control and Prevention. Direct and indirect effects of routine vaccination of children with 7-valent pneumococcal conjugate vaccine on incidence of invasive pneumococcal disease—United States, 1998–2003. MMWR Morb. Mortal. Wkly. Rep. 2005, 54, 893–897.
Singleton, R.J.; Hennessy, T.W.; Bulkow, L.R.; Hammitt, L.L.; Zulz, T.; Hurlburt, D.A.; Butler, J.C.; Rudolph, K.; Parkinson, A. Invasive pneumococcal disease caused by nonvaccine serotypes among Alaska native children with high levels of 7-valent pneumococcal conjugate vaccine coverage. JAMA 2007, 297, 1784–1792, doi:10.1001/jama.297.16.1784.
[23]
Hsu, H.E.; Shutt, K.A.; Moore, M.R.; Beall, B.W.; Bennett, N.M.; Craig, A.S.; Farley, M.M.; Jorgensen, J.H.; Lexau, C.A.; Petit, S.; et al. Effect of pneumococcal conjugate vaccine on pneumococcal meningitis. N. Engl. J. Med. 2009, 360, 244–256, doi:10.1056/NEJMoa0800836.
[24]
Weinberger, D.M.; Malley, R.; Lipsitch, M. Serotype replacement in disease after pneumococcal vaccination. Lancet 2011, 378, 1962–1973, doi:10.1016/S0140-6736(10)62225-8.
[25]
Gonzalez-Fernandez, A.; Faro, J.; Fernandez, C. Immune responses to polysaccharides: Lessons from humans and mice. Vaccine 2008, 26, 292–300, doi:10.1016/j.vaccine.2007.11.042.
[26]
Ginsburg, A.S.; Nahm, M.H.; Khambaty, F.M.; Alderson, M.R. Issues and challenges in the development of pneumococcal protein vaccines. Expert Rev. Vaccines 2012, 11, 279–285, doi:10.1586/erv.12.5.
[27]
Jambo, K.C.; Sepako, E.; Heyderman, R.S.; Gordon, S.B. Potential role for mucosally active vaccines against pneumococcal pneumonia. Trends Microbiol. 2010, 18, 81–89, doi:10.1016/j.tim.2009.12.001.
[28]
Malley, R.; Anderson, P.W. Serotype-independent pneumococcal experimental vaccines that induce cellular as well as humoral immunity. Proc. Natl. Acad. Sci. USA 2012, 109, 3623–3627, doi:10.1073/pnas.1121383109.
[29]
Chiavolini, D.; Pozzi, G.; Ricci, S. Animal models of Streptococcus pneumoniae disease. Clin. Microbiol. Rev. 2008, 21, 666–685, doi:10.1128/CMR.00012-08.
[30]
Sabirov, A.; Metzger, D.W. Mouse models for the study of mucosal vaccination against otitis media. Vaccine 2008, 26, 1501–1524, doi:10.1016/j.vaccine.2008.01.029.
[31]
Gamez, G.; Hammerschmidt, S. Combat pneumococcal infections: Adhesins as candidates for protein-based vaccine development. Curr. Drug Targets 2012, 13, 323–337, doi:10.2174/138945012799424697.
[32]
Tai, S.S. Streptococcus pneumoniae protein vaccine candidates: Properties, activities and animal studies. Crit. Rev. Microbiol. 2006, 32, 139–153, doi:10.1080/10408410600822942.
Simell, B.; Auranen, K.; Kayhty, H.; Goldblatt, D.; Dagan, R.; O’Brien, K.L. The fundamental link between pneumococcal carriage and disease. Expert Rev. Vaccines 2012, 11, 841–855, doi:10.1586/erv.12.53.
[35]
Curtiss, R., III; Xin, W.; Li, Y.; Kong, W.; Wanda, S.Y.; Gunn, B.; Wang, S. New technologies in using recombinant attenuated Salmonella vaccine vectors. Crit. Rev. Immunol. 2010, 30, 255–270, doi:10.1615/CritRevImmunol.v30.i3.30.
[36]
Wang, S.; Kong, Q.; Curtiss, R., III. New technologies in developing recombinant attenuated Salmonella vaccine vectors. Microbial. Pathog. 2013, 58, 17–28, doi:10.1016/j.micpath.2012.10.006.
[37]
Moon, J.J.; McSorley, S.J. Tracking the dynamics of Salmonella specific T cell responses. Curr. Top. Microbiol. Immunol. 2009, 334, 179–198.
[38]
Griffin, A.J.; McSorley, S.J. Development of protective immunity to Salmonella, a mucosal pathogen with a systemic agenda. Mucosal. Immunol. 2011, 4, 371–382, doi:10.1038/mi.2011.2.
[39]
Broz, P.; Ohlson, M.B.; Monack, D.M. Innate immune response to Salmonella typhimurium, a model enteric pathogen. Gut Microbes 2012, 3, 62–70, doi:10.4161/gmic.19141.
[40]
Frey, S.E.; Lottenbach, K.R.; Hill, H.; Blevins, T.P.; Yu, Y.; Zhang, Y.; Brenneman, K.E.; Kelly-Aehle, S.M.; McDonald, C.; Jansen, A.; et al. A Phase I, dose-escalation trial in adults of three recombinant attenuated Salmonella typhi vaccine vectors producing Streptococcus pneumoniae surface protein antigen PspA. Vaccine 2013, 31, 4874–4880, doi:10.1016/j.vaccine.2013.07.049.
[41]
Paton, J.C.; Morona, J.K.; Harrer, S.; Hansman, D.; Morona, R. Immunization of mice with Salmonella typhimurium C5 aroA expressing a genetically toxoided derivative of the pneumococcal toxin pneumolysin. Microb. Pathog. 1993, 14, 95–102, doi:10.1006/mpat.1993.1010.
[42]
Wang, S.; Li, Y.; Shi, H.; Scarpellini, G.; Torres-Escobar, A.; Roland, K.L.; Curtiss, R., III. Immune responses to recombinant pneumococcal PsaA antigen delivered by a live attenuated Salmonella vaccine. Infect. Immun. 2010, 78, 3258–3271, doi:10.1128/IAI.00176-10.
[43]
Nayak, A.R.; Tinge, S.A.; Tart, R.C.; McDaniel, L.S.; Briles, D.E.; Curtiss, R., III. A live recombinant avirulent oral Salmonella vaccine expressing pneumococcal surface protein A induces protective responses against Streptococcus pneumoniae. Infect. Immun. 1998, 66, 3744–3751.
[44]
Kang, H.Y.; Srinivasan, J.; Curtiss, R., III. Immune responses to recombinant pneumococcal PspA antigen delivered by live attenuated Salmonella enterica serovar typhimurium vaccine. Infect. Immun. 2002, 70, 1739–1749, doi:10.1128/IAI.70.4.1739-1749.2002.
[45]
Kang, H.Y.; Curtiss, R., III. Immune responses dependent on antigen location in recombinant attenuated Salmonella typhimurium vaccines following oral immunization. FEMS Immunol. Med. Microbiol. 2003, 37, 99–104, doi:10.1016/S0928-8244(03)00063-4.
[46]
Kong, W.; Wanda, S.Y.; Zhang, X.; Bollen, W.; Tinge, S.A.; Roland, K.L.; Curtiss, R., III. Regulated programmed lysis of recombinant Salmonella in host tissues to release protective antigens and confer biological containment. Proc. Natl. Acad. Sci. USA 2008, 105, 9361–9366, doi:10.1073/pnas.0803801105.
[47]
Li, Y.; Wang, S.; Xin, W.; Scarpellini, G.; Shi, Z.; Gunn, B.; Roland, K.L.; Curtiss, R., III. A sopB deletion mutation enhances the immunogenicity and protective efficacy of a heterologous antigen delivered by live attenuated Salmonella enterica vaccines. Infect. Immun. 2008, 76, 5238–5246, doi:10.1128/IAI.00720-08.
[48]
Park, S.M.; Ko, H.J.; Shim, D.H.; Yang, J.Y.; Park, Y.H.; Curtiss, R., III; Kweon, M.N. MyD88 signaling is not essential for induction of antigen-specific B cell responses but is indispensable for protection against Streptococcus pneumoniae infection following oral vaccination with attenuated Salmonella expressing PspA antigen. J. Immunol. 2008, 181, 6447–6455.
[49]
Li, Y.; Wang, S.; Scarpellini, G.; Gunn, B.; Xin, W.; Wanda, S.Y.; Roland, K.L.; Curtiss, R., III. Evaluation of new generation Salmonella enterica serovar typhimurium vaccines with regulated delayed attenuation to induce immune responses against PspA. Proc. Natl. Acad. Sci. USA 2009, 106, 593–598.
[50]
Xin, W.; Wanda, S.Y.; Li, Y.; Wang, S.; Mo, H.; Curtiss, R., III. Analysis of type II secretion of recombinant pneumococcal PspA and PspC in a Salmonella enterica serovar typhimurium vaccine with regulated delayed antigen synthesis. Infect. Immun. 2008, 76, 3241–3254, doi:10.1128/IAI.01623-07.
[51]
Kong, Q.; Liu, Q.; Roland, K.L.; Curtiss, R., III. Regulated delayed expression of rfaH in an attenuated Salmonella enterica serovar typhimurium vaccine enhances immunogenicity of outer membrane proteins and a heterologous antigen. Infect. Immun. 2009, 77, 5572–5582.
[52]
Shi, H.; Wang, S.; Roland, K.L.; Gunn, B.M.; Curtiss, R., III. Immunogenicity of a live recombinant Salmonella enterica serovar typhimurium vaccine expressing pspA in neonates and infant mice born from naive and immunized mothers. Clin. Vaccine Immunol. 2010, 17, 363–371, doi:10.1128/CVI.00413-09.
[53]
Kong, Q.; Liu, Q.; Jansen, A.; Curtiss, R., III. Regulated delayed expression of rfc enhances the immunogenicity and protective efficacy of a heterologous antigen delivered by live attenuated Salmonella enterica vaccines. Vaccine 2010, 28, 6094–6103, doi:10.1016/j.vaccine.2010.06.074.
[54]
Wang, S.; Li, Y.; Scarpellini, G.; Kong, W.; Shi, H.; Baek, C.H.; Gunn, B.; Wanda, S.Y.; Roland, K.L.; Zhang, X.; et al. Salmonella vaccine vectors displaying delayed antigen synthesis in vivo to enhance immunogenicity. Infect. Immun. 2010, 78, 3969–3980, doi:10.1128/IAI.00444-10.
[55]
Muralinath, M.; Kuehn, M.J.; Roland, K.L.; Curtiss, R., III. Immunization with Salmonella enterica serovar typhimurium-derived outer membrane vesicles delivering the pneumococcal protein PspA confers protection against challenge with Streptococcus pneumoniae. Infect. Immun. 2011, 79, 887–894, doi:10.1128/IAI.00950-10.
[56]
Wang, S.; Li, Y.; Shi, H.; Sun, W.; Roland, K.L.; Curtiss, R., III. Comparison of a regulated delayed antigen synthesis system with in vivo-inducible promoters for antigen delivery by live attenuated Salmonella vaccines. Infect. Immun. 2011, 79, 937–949, doi:10.1128/IAI.00445-10.
[57]
Kong, Q.; Six, D.A.; Roland, K.L.; Liu, Q.; Gu, L.; Reynolds, C.M.; Wang, X.; Raetz, C.R.; Curtiss, R., III. Salmonella synthesizing 1-dephosphorylated lipopolysaccharide exhibits low endotoxic activity while retaining its immunogenicity. J. Immunol. 2011, 187, 412–423, doi:10.4049/jimmunol.1100339.
[58]
Kong, Q.; Yang, J.; Liu, Q.; Alamuri, P.; Roland, K.L.; Curtiss, R., III. Effect of deletion of genes involved in lipopolysaccharide core and O-antigen synthesis on virulence and immunogenicity of Salmonella enterica serovar typhimurium. Infect. Immun. 2011, 79, 4227–4239, doi:10.1128/IAI.05398-11.
[59]
Kong, Q.; Six, D.A.; Liu, Q.; Gu, L.; Roland, K.L.; Raetz, C.R.; Curtiss, R., III. Palmitoylation state impacts induction of innate and acquired immunity by the Salmonella enterica serovar typhimurium msbB mutant. Infect. Immun. 2011, 79, 5027–5038, doi:10.1128/IAI.05524-11.
[60]
Kong, Q.; Six, D.A.; Liu, Q.; Gu, L.; Wang, S.; Alamuri, P.; Raetz, C.R.; Curtiss, R., III. Phosphate groups of Lipid A are essential for Salmonella enterica serovar typhimurium virulence and affect innate and adaptive immunity. Infect. Immun. 2012, 80, 3215–3224, doi:10.1128/IAI.00123-12.
[61]
Seo, S.U.; Kim, J.J.; Yang, H.; Kwon, H.J.; Yang, J.Y.; Curtiss, R., III; Kweon, M.N. Effective protection against secondary pneumococcal pneumonia by oral vaccination with attenuated Salmonella delivering PspA antigen in mice. Vaccine 2012, 30, 6816–6823, doi:10.1016/j.vaccine.2012.09.015.
[62]
Xin, W.; Li, Y.; Mo, H.; Roland, K.L.; Curtiss, R., III. PspA family fusion proteins delivered by attenuated Salmonella enterica serovar typhimurium extend and enhance protection against Streptococcus pneumoniae. Infect. Immun. 2009, 77, 4518–4528, doi:10.1128/IAI.00486-09.
[63]
Xin, W.; Wanda, S.Y.; Zhang, X.; Santander, J.; Scarpellini, G.; Ellis, K.; Alamuri, P.; Curtiss, R., III. The Asd+-DadB+ dual-plasmid system offers a novel means to deliver multiple protective antigens by a recombinant attenuated Salmonella vaccine. Infect. Immun. 2012, 80, 3621–3633, doi:10.1128/IAI.00620-12.
[64]
Zhang, Q.; Ma, Q.; Li, Q.; Yao, W.; Wang, C. Enhanced protection against nasopharyngeal carriage of Streptococcus pneumoniae elicited by oral multiantigen DNA vaccines delivered in attenuated Salmonella typhimurium. Mol. Biol. Rep. 2011, 38, 1209–1217, doi:10.1007/s11033-010-0219-7.
[65]
Shi, H.; Santander, J.; Brenneman, K.E.; Wanda, S.Y.; Wang, S.; Senechal, P.; Sun, W.; Roland, K.L.; Curtiss, R., III. Live recombinant Salmonella typhi vaccines constructed to investigate the role of rpoS in eliciting immunity to a heterologous antigen. PLoS One 2010, 5, e11142, doi:10.1371/journal.pone.0011142.
[66]
Shi, H.; Wang, S.; Curtiss, R., III. Evaluation of regulated delayed attenuation strategies for Salmonella enterica serovar Typhi vaccine vectors in neonatal and infant mice. Clin. Vaccine Immunol. 2013, 20, 931–944, doi:10.1128/CVI.00003-13.
[67]
Oliveira, M.L.; Areas, A.P.; Campos, I.B.; Monedero, V.; Perez-Martinez, G.; Miyaji, E.N.; Leite, L.C.; Aires, K.A.; Lee Ho, P. Induction of systemic and mucosal immune response and decrease in Streptococcus pneumoniae colonization by nasal inoculation of mice with recombinant lactic acid bacteria expressing pneumococcal surface antigen A. Microbes Infect. 2006, 8, 1016–1024, doi:10.1016/j.micinf.2005.10.020.
[68]
Hanniffy, S.B.; Carter, A.T.; Hitchin, E.; Wells, J.M. Mucosal delivery of a pneumococcal vaccine using Lactococcus lactis affords protection against respiratory infection. J. Infect. Dis. 2007, 195, 185–193, doi:10.1086/509807.
[69]
Campos, I.B.; Darrieux, M.; Ferreira, D.M.; Miyaji, E.N.; Silva, D.A.; Areas, A.P.; Aires, K.A.; Leite, L.C.; Ho, P.L.; Oliveira, M.L. Nasal immunization of mice with Lactobacillus casei expressing the Pneumococcal Surface Protein A: Induction of antibodies, complement deposition and partial protection against Streptococcus pneumoniae challenge. Microbes Infect. 2008, 10, 481–488, doi:10.1016/j.micinf.2008.01.007.
[70]
Ferreira, D.M.; Darrieux, M.; Silva, D.A.; Leite, L.C.; Ferreira, J.M., Jr.; Ho, P.L.; Miyaji, E.N.; Oliveira, M.L. Characterization of protective mucosal and systemic immune responses elicited by pneumococcal surface protein PspA and PspC nasal vaccines against a respiratory pneumococcal challenge in mice. Clin. Vaccine Immunol. 2009, 16, 636–645, doi:10.1128/CVI.00395-08.
[71]
De Lúcia Hernani, M.; Ferreira, P.C.; Ferreira, D.M.; Miyaji, E.N.; Ho, P.L.; Oliveira, M.L. Nasal immunization of mice with Lactobacillus casei expressing the pneumococcal surface protein C primes the immune system and decreases pneumococcal nasopharyngeal colonization in mice. FEMS Immunol. Med. Microbiol. 2011, 62, 263–272, doi:10.1111/j.1574-695X.2011.00809.x.
[72]
Medina, M.; Villena, J.; Vinti?i, E.; Hebert, E.M.; Raya, R.; Alvarez, S. Nasal immunization with Lactococcus lactis expressing the pneumococcal protective protein A induces protective immunity in mice. Infect. Immun. 2008, 76, 2696–2705, doi:10.1128/IAI.00119-08.
[73]
Villena, J.; Medina, M.; Raya, R.; Alvarez, S. Oral immunization with recombinant Lactococcus lactis confers protection against respiratory pneumococcal infection. Can. J. Microbiol. 2008, 54, 845–853, doi:10.1139/W08-077.
[74]
Vinti?i, E.; Villena, J.; Alvarez, S.; Medina, M. Administration of a probiotic associated with nasal vaccination with inactivated Lactococcus lactis-PppA induces effective protection against pneumoccocal infection in young mice. Clin. Exp. Immunol. 2010, 159, 351–362, doi:10.1111/j.1365-2249.2009.04056.x.
[75]
Villena, J.; Medina, M.; Racedo, S.; Alvarez, S. Resistance of young mice to pneumococcal infection can be improved by oral vaccination with recombinant Lactococcus lactis. J. Microbiol. Immunol. Infect. 2010, 43, 1–10, doi:10.1016/S1684-1182(10)60001-1.
[76]
Gilbert, C.; Robinson, K.; le Page, R.W.; Wells, J.M. Heterologous expression of an immunogenic pneumococcal type 3 capsular polysaccharide in Lactococcus lactis. Infect. Immun. 2000, 68, 3251–3260, doi:10.1128/IAI.68.6.3251-3260.2000.
[77]
Nierop Groot, M.N.; Godefrooij, J.; Kleerebezem, M. Heterologous expression of the pneumococcal serotype 14 polysaccharide in Lactococcus lactis requires lactococcal epsABC regulatory genes. Appl. Environ. Microbiol. 2008, 74, 912–915, doi:10.1128/AEM.01655-07.
[78]
Langermann, S.; Palaszynski, S.R.; Burlein, J.E.; Koenig, S.; Hanson, M.S.; Briles, D.E.; Stover, C.K. Protective humoral response against pneumococcal infection in mice elicited by recombinant bacille Calmette-Guerin vaccines expressing pneumococcal surface protein A. J. Exp. Med. 1994, 180, 2277–2286, doi:10.1084/jem.180.6.2277.
[79]
Arévalo, M.T.; Xu, Q.; Paton, J.C.; Hollingshead, S.K.; Pichichero, M.E.; Briles, D.E.; Girgis, N.; Zeng, M. Mucosal vaccination with a multicomponent adenovirus-vectored vaccine protects against Streptococcus pneumoniae infection in the lung. FEMS Immunol. Med. Microbiol. 2009, 55, 346–351, doi:10.1111/j.1574-695X.2008.00518.x.
[80]
Wang, S.; Shi, H.; Li, Y.; Shi, Z.; Zhang, X.; Baek, C.H.; Mothershead, T.; Curtiss, R., III. A colanic acid operon deletion mutation enhances induction of early antibody responses by live attenuated Salmonella vaccines. Infect. Immun. 2013, 81, 3148–3162, doi:10.1128/IAI.00097-13.
Morrison, K.E.; Lake, D.; Crook, J.; Carlone, G.M.; Ades, E.; Facklam, R.; Sampson, J.S. Confirmation of psaA in all 90 serotypes of Streptococcus pneumoniae by PCR and potential of this assay for identification and diagnosis. J. Clin. Microbiol. 2000, 38, 434–437.
[83]
Crook, J.; Tharpe, J.A.; Johnson, S.E.; Williams, D.B.; Stinson, A.R.; Facklam, R.R.; Ades, E.W.; Carlone, G.M.; Sampson, J.S. Immunoreactivity of five monoclonal antibodies against the 37-kilodalton common cell wall protein (PsaA) of Streptococcus pneumoniae. Clin. Diagn. Lab. Immunol. 1998, 5, 205–210.
Briles, D.E.; Tart, R.C.; Swiatlo, E.; Dillard, J.P.; Smith, P.; Benton, K.A.; Ralph, B.A.; Brooks-Walter, A.; Crain, M.J.; Hollingshead, S.K.; et al. Pneumococcal diversity: Considerationsfor new vaccine strategies with emphasis on pneumococcal surface protein A (PspA). Clin. Microbiol. Rev. 1998, 11, 645–657.
[86]
Hollingshead, S.K.; Becker, R.; Briles, D.E. Diversity of PspA: Mosaic genes and evidence for past recombination in Streptococcus pneumoniae. Infect. Immun. 2000, 68, 5889–5900, doi:10.1128/IAI.68.10.5889-5900.2000.
[87]
Hollingshead, S.K.; Baril, L.; Ferro, S.; King, J.; Coan, P.; Briles, D.E. Pneumococcal surface protein A (PspA) family distribution among clinical isolates from adults over 50 years of age collected in seven countries. J. Med. Microbiol. 2006, 55, 215–221, doi:10.1099/jmm.0.46268-0.
[88]
Croney, C.M.; Coats, M.T.; Nahm, M.H.; Briles, D.E.; Crain, M.J. PspA family distribution, unlike capsular serotype, remains unaltered following introduction of the heptavalent pneumococcal conjugate vaccine. Clin. Vaccine Immunol. 2012, 19, 891–896, doi:10.1128/CVI.05671-11.
[89]
McDaniel, L.S.; Sheffield, J.S.; Delucchi, P.; Briles, D.E. PspA, a surface protein of Streptococcus pneumoniae, is capable of eliciting protection against pneumococci of more than one capsular type. Infect. Immun. 1991, 59, 222–228.
[90]
Tart, R.C.; McDaniel, L.S.; Ralph, B.A.; Briles, D.E. Truncated Streptococcus pneumoniae PspA molecules elicit cross-protective immunity against pneumococcal challenge in mice. J. Infect. Dis. 1996, 173, 380–386, doi:10.1093/infdis/173.2.380.
[91]
Gunn, B.M.; Wanda, S.Y.; Burshell, D.; Wang, C.; Curtiss, R., III. Construction of recombinant attenuated Salmonella enterica serovar typhimurium vaccine vector strains for safety in newborn and infant mice. Clin. Vaccine Immunol. 2010, 17, 354–362, doi:10.1128/CVI.00412-09.
[92]
Bollen, W.S.; Gunn, B.M.; Mo, H.; Lay, M.K.; Curtiss, R., III. Presence of wild-type and attenuated Salmonella enterica strains in brain tissues following inoculation of mice by different routes. Infect. Immun. 2008, 76, 3268–3272, doi:10.1128/IAI.00244-08.
[93]
Iannelli, F.; Oggioni, M.R.; Pozzi, G. Allelic variation in the highly polymorphic locus pspC of Streptococcus pneumoniae. Gene 2002, 284, 63–71, doi:10.1016/S0378-1119(01)00896-4.
[94]
Brooks-Walter, A.; Briles, D.E.; Hollingshead, S.K. The pspC gene of Streptococcus pneumoniae encodes a polymorphic protein, PspC, which elicits cross-reactive antibodies to PspA and provides immunity to pneumococcal bacteremia. Infect. Immun. 1999, 67, 6533–6542.
[95]
Balachandran, P.; Brooks-Walter, A.; Virolainen-Julkunen, A.; Hollingshead, S.K.; Briles, D.E. Role of pneumococcal surface protein C in nasopharyngeal carriage and pneumonia and its ability to elicit protection against carriage of Streptococcus pneumoniae. Infect. Immun. 2002, 70, 2526–2534, doi:10.1128/IAI.70.5.2526-2534.2002.
[96]
Ogunniyi, A.D.; Woodrow, M.C.; Poolman, J.T.; Paton, J.C. Protection against Streptococcus pneumoniae elicited by immunization with pneumolysin and CbpA. Infect. Immun. 2001, 69, 5997–6003, doi:10.1128/IAI.69.10.5997-6003.2001.
[97]
Daniels, C.C.; Coan, P.; King, J.; Hale, J.; Benton, K.A.; Briles, D.E.; Hollingshead, S.K. The proline-rich region of pneumococcal surface proteins A and C contains surface-accessible epitopes common to all pneumococci and elicits antibody-mediated protection against sepsis. Infect. Immun. 2010, 78, 2163–2172, doi:10.1128/IAI.01199-09.
[98]
Miyaji, E.N.; Dias, W.O.; Gamberini, M.; Gebara, V.C.; Schenkman, R.P.; Wild, J.; Riedl, P.; Reimann, J.; Schirmbeck, R.; Leite, L.C. PsaA (pneumococcal surface adhesin A) and PspA (pneumococcal surface protein A) DNA vaccines induce humoral and cellular immune responses against Streptococcus pneumoniae. Vaccine 2001, 20, 805–812, doi:10.1016/S0264-410X(01)00395-4.
[99]
Rubins, J.B.; Pomeroy, C. Role of gamma interferon in the pathogenesis of bacteremic pneumococcal pneumonia. Infect. Immun. 1997, 65, 2975–2977.
[100]
Kerr, A.R.; Irvine, J.J.; Search, J.J.; Gingles, N.A.; Kadioglu, A.; Andrew, P.W.; McPheat, W.L.; Booth, C.G.; Mitchell, T.J. Role of inflammatory mediators in resistance and susceptibility to pneumococcal infection. Infect. Immun. 2002, 70, 1547–1557, doi:10.1128/IAI.70.3.1547-1557.2002.
[101]
Williams, J.A.; Carnes, A.E.; Hodgson, C.P. Plasmid DNA vaccine vector design: Impact on efficacy, safety and upstream production. Biotechnol. Adv. 2009, 27, 353–370, doi:10.1016/j.biotechadv.2009.02.003.
[102]
Ashraf, S.; Kong, W.; Wang, S.; Yang, J.; Curtiss, R., III. Protective cellular responses elicited by vaccination with influenza nucleoprotein delivered by a live recombinant attenuated Salmonella vaccine. Vaccine 2011, 29, 3990–4002, doi:10.1016/j.vaccine.2011.03.066.
[103]
Beuzón, C.R.; Meresse, S.; Unsworth, K.E.; Ruiz-Albert, J.; Garvis, S.; Waterman, S.R.; Ryder, T.A.; Boucrot, E.; Holden, D.W. Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. EMBO J. 2000, 19, 3235–3249, doi:10.1093/emboj/19.13.3235.
[104]
De Jong, H.K.; Parry, C.M.; van der Poll, T.; Wiersinga, W.J. Host-pathogen interaction in invasive Salmonellosis. PLoS Pathog. 2012, 8, e1002933, doi:10.1371/journal.ppat.1002933.
[105]
Roland, K.L.; Brenneman, K.E. Salmonella as a vaccine delivery vehicle. Expert Rev. Vaccines 2013, 12, 1033–1045, doi:10.1586/14760584.2013.825454.
[106]
Mestas, J.; Hughes, C.C. Of mice and not men: Differences between mouse and human immunology. J. Immunol. 2004, 172, 2731–2738.
[107]
Gibbons, D.L.; Spencer, J. Mouse and human intestinal immunity: Same ballpark, different players; different rules, same score. Mucosal. Immunol. 2011, 4, 148–157.
[108]
Mian, M.F.; Pek, E.A.; Chenoweth, M.J.; Coombes, B.K.; Ashkar, A.A. Humanized mice for Salmonella typhi infection: New tools for an old problem. Virulence 2011, 2, 248–252, doi:10.4161/viru.2.3.16133.
[109]
Firoz Mian, M.; Pek, E.A.; Chenoweth, M.J.; Ashkar, A.A. Humanized mice are susceptible to Salmonella typhi infection. Cell. Mol. Immunol. 2011, 8, 83–87.
[110]
Libby, S.J.; Brehm, M.A.; Greiner, D.L.; Shultz, L.D.; McClelland, M.; Smith, K.D.; Cookson, B.T.; Karlinsey, J.E.; Kinkel, T.L.; Porwollik, S.; et al. Humanized nonobese diabetic-scid IL2rgnull mice are susceptible to lethal Salmonella Typhi infection. Proc. Natl. Acad. Sci. USA 2010, 107, 15589–15594, doi:10.1073/pnas.1005566107.
[111]
Song, J.; Willinger, T.; Rongvaux, A.; Eynon, E.E.; Stevens, S.; Manz, M.G.; Flavell, R.A.; Galan, J.E. A mouse model for the human pathogen Salmonella typhi. Cell Host Microbe 2010, 8, 369–376, doi:10.1016/j.chom.2010.09.003.
[112]
Frasca, D.; Blomberg, B.B. Effects of aging on B cell function. Curr. Opin. Immunol. 2009, 21, 425–430, doi:10.1016/j.coi.2009.06.001.
[113]
Haynes, L.; Maue, A.C. Effects of aging on T cell function. Curr. Opin. Immunol. 2009, 21, 414–417, doi:10.1016/j.coi.2009.05.009.
[114]
Frasca, D.; Diaz, A.; Romero, M.; Landin, A.M.; Blomberg, B.B. Age effects on B cells and humoral immunity in humans. Ageing Res. Rev. 2011, 10, 330–335, doi:10.1016/j.arr.2010.08.004.
[115]
Agrawal, A.; Gupta, S. Impact of aging on dendritic cell functions in humans. Ageing Res. Rev. 2011, 10, 336–345, doi:10.1016/j.arr.2010.06.004.
[116]
Solana, R.; Tarazona, R.; Gayoso, I.; Lesur, O.; Dupuis, G.; Fulop, T. Innate immunosenescence: Effect of aging on cells and receptors of the innate immune system in humans. Semin. Immunol. 2012, 24, 331–341, doi:10.1016/j.smim.2012.04.008.
[117]
Mahbub, S.; Brubaker, A.L.; Kovacs, E.J. Aging of the innate immune system: An update. Curr. Immunol. Rev. 2011, 7, 104–115, doi:10.2174/157339511794474181.
Adkins, B.; Leclerc, C.; Marshall-Clarke, S. Neonatal adaptive immunity comes of age. Nat. Rev. Immunol. 2004, 4, 553–564, doi:10.1038/nri1394.
[121]
Levy, O. Innate immunity of the newborn: Basic mechanisms and clinical correlates. Nat. Rev. Immunol. 2007, 7, 379–390, doi:10.1038/nri2075.
[122]
Siegrist, C.A. The challenges of vaccine responses in early life: Selected examples. J. Comp. Pathol. 2007, 137, S4–S9, doi:10.1016/j.jcpa.2007.04.004.
[123]
Wells, J.M.; Mercenier, A. Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat. Rev. Microbiol. 2008, 6, 349–362, doi:10.1038/nrmicro1840.
[124]
Johnston, B.C.; Ma, S.S.; Goldenberg, J.Z.; Thorlund, K.; Vandvik, P.O.; Loeb, M.; Guyatt, G.H. Probiotics for the prevention of Clostridium difficile-associated diarrhea: A systematic review and meta-analysis. Ann. Intern. Med. 2012, 157, 878–888, doi:10.7326/0003-4819-157-12-201212180-00563.
[125]
Ritchie, M.L.; Romanuk, T.N. A meta-analysis of probiotic efficacy for gastrointestinal diseases. PLoS One 2012, 7, e34938, doi:10.1371/journal.pone.0034938.
Tsai, Y.T.; Cheng, P.C.; Pan, T.M. The immunomodulatory effects of lactic acid bacteria for improving immune functions and benefits. Appl. Microbiol. Biotechnol. 2012, 96, 853–862, doi:10.1007/s00253-012-4407-3.
[128]
Rizzello, V.; Bonaccorsi, I.; Dongarra, M.L.; Fink, L.N.; Ferlazzo, G. Role of natural killer and dendritic cell crosstalk in immunomodulation by commensal bacteria probiotics. J. Biomed. Biotechnol. 2011, 2011, doi:10.1155/2011/473097.
Van Huynegem, K.; Loos, M.; Steidler, L. Immunomodulation by genetically engineered lactic acid bacteria. Front. Biosci. 2009, 14, 4825–4835, doi:10.2741/3571.
[131]
Detmer, A.; Glenting, J. Live bacterial vaccines—A review and identification of potential hazards. Microb. Cell Fact. 2006, 5, doi:10.1186/1475-2859-5-23.
[132]
Christensen, H.R.; Frokiaer, H.; Pestka, J.J. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J. Immunol. 2002, 168, 171–178.
[133]
Pontes, D.S.; de Azevedo, M.S.; Chatel, J.M.; Langella, P.; Azevedo, V.; Miyoshi, A. Lactococcus lactis as a live vector: Heterologous protein production and DNA delivery systems. Protein Expr. Purif. 2011, 79, 165–175, doi:10.1016/j.pep.2011.06.005.
[134]
Nouaille, S.; Ribeiro, L.A.; Miyoshi, A.; Pontes, D.; le Loir, Y.; Oliveira, S.C.; Langella, P.; Azevedo, V. Heterologous protein production and delivery systems for Lactococcus lactis. Genet. Mol. Res. 2003, 2, 102–111.
[135]
Bermudez-Humaran, L.G.; Kharrat, P.; Chatel, J.M.; Langella, P. Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Microb. Cell Fact. 2011, 10, doi:10.1186/1475-2859-10-S1-S4.
[136]
Vinti?i, E.O.; Medina, M.S. Host immunity in the protective response to nasal immunization with a pneumococcal antigen associated to live and heat-killed Lactobacillus casei. BMC Immunol. 2011, 12, doi:10.1186/1471-2172-12-46.
[137]
Wong, S.S.; Quan Toh, Z.; Dunne, E.M.; Mulholland, E.K.; Tang, M.L.; Robins-Browne, R.M.; Licciardi, P.V.; Satzke, C. Inhibition of Streptococcus pneumoniae adherence to human epithelial cells in vitro by the probiotic Lactobacillus rhamnosus GG. BMC Res. Notes 2013, 6, doi:10.1186/1756-0500-6-135.
[138]
Gluck, U.; Gebbers, J.O. Ingested probiotics reduce nasal colonization with pathogenic bacteria (Staphylococcus aureus, Streptococcus pneumoniae, and beta-hemolytic streptococci). Am. J. Clin. Nutr. 2003, 77, 517–520.
[139]
Villena, J.; Racedo, S.; Aguero, G.; Bru, E.; Medina, M.; Alvarez, S. Lactobacillus casei improves resistance to pneumococcal respiratory infection in malnourished mice. J. Nutr. 2005, 135, 1462–1469.
[140]
Racedo, S.; Villena, J.; Medina, M.; Aguero, G.; Rodriguez, V.; Alvarez, S. Lactobacillus casei administration reduces lung injuries in a Streptococcus pneumoniae infection in mice. Microbes Infect. 2006, 8, 2359–2366, doi:10.1016/j.micinf.2006.04.022.
[141]
Villena, J.; Medina, M.; Vinti?i, E.; Alvarez, S. Stimulation of respiratory immunity by oral administration of Lactococcus lactis. Can. J. Microbiol. 2008, 54, 630–638, doi:10.1139/W08-052.
[142]
Cangemi de Gutierrez, R.; Santos, V.; Nader-Macias, M.E. Protective effect of intranasally inoculated Lactobacillus fermentum against Streptococcus pneumoniae challenge on the mouse respiratory tract. FEMS Immunol. Med. Microbiol. 2001, 31, 187–195, doi:10.1111/j.1574-695X.2001.tb00519.x.
[143]
Medina, M.; Villena, J.; Salva, S.; Vinti?i, E.; Langella, P.; Alvarez, S. Nasal administration of Lactococcus lactis improves local and systemic immune responses against Streptococcus pneumoniae. Microbiol. Immunol. 2008, 52, 399–409, doi:10.1111/j.1348-0421.2008.00050.x.
[144]
Miettinen, M.; Vuopio-Varkila, J.; Varkila, K. Production of human tumor necrosis factor alpha, interleukin-6, and interleukin-10 is induced by lactic acid bacteria. Infect. Immun. 1996, 64, 5403–5405.
[145]
Medina, M.; Vinti?i, E.; Villena, J.; Raya, R.; Alvarez, S. Lactococcus lactis as an adjuvant and delivery vehicle of antigens against pneumococcal respiratory infections. Bioeng. Bugs 2010, 1, 313–325, doi:10.4161/bbug.1.5.12086.
[146]
Villena, J.; Oliveira, M.L.; Ferreira, P.C.; Salva, S.; Alvarez, S. Lactic acid bacteria in the prevention of pneumococcal respiratory infection: Future opportunities and challenges. Int. Immunopharmacol. 2011, 11, 1633–1645, doi:10.1016/j.intimp.2011.06.004.
[147]
Kleerebezem, M.; Beerthuyzen, M.M.; Vaughan, E.E.; de Vos, W.M.; Kuipers, O.P. Controlled gene expression systems for lactic acid bacteria: Transferable nisin-inducible expression cassettes for Lactococcus, Leuconostoc and Lactobacillus spp. Appl. Environ. Microbiol. 1997, 63, 4581–4584.
[148]
Kuipers, O.P.; de Ruyter, P.G.; Kleerebezem, M.; de Vos, W.M. Controlled overproduction of proteins by lactic acid bacteria. Trends Biotechnol. 1997, 15, 135–140, doi:10.1016/S0167-7799(97)01029-9.
[149]
Bosma, T.; Kanninga, R.; Neef, J.; Audouy, S.A.; van Roosmalen, M.L.; Steen, A.; Buist, G.; Kok, J.; Kuipers, O.P.; Robillard, G.; et al. Novel surface display system for proteins on non-genetically modified gram-positive bacteria. Appl. Environ. Microbiol. 2006, 72, 880–889, doi:10.1128/AEM.72.1.880-889.2006.
[150]
Audouy, S.A.; van Selm, S.; van Roosmalen, M.L.; Post, E.; Kanninga, R.; Neef, J.; Estevao, S.; Nieuwenhuis, E.E.; Adrian, P.V.; Leenhouts, K.; et al. Development of lactococcal GEM-based pneumococcal vaccines. Vaccine 2007, 25, 2497–2506, doi:10.1016/j.vaccine.2006.09.026.
[151]
Van Roosmalen, M.L.; Kanninga, R.; El Khattabi, M.; Neef, J.; Audouy, S.; Bosma, T.; Kuipers, A.; Post, E.; Steen, A.; Kok, J.; et al. Mucosal vaccine delivery of antigens tightly bound to an adjuvant particle made from food-grade bacteria. Methods 2006, 38, 144–149, doi:10.1016/j.ymeth.2005.09.015.
[152]
Audouy, S.A.; van Roosmalen, M.L.; Neef, J.; Kanninga, R.; Post, E.; van Deemter, M.; Metselaar, H.; van Selm, S.; Robillard, G.T.; Leenhouts, K.J.; et al. Lactococcus lactis GEM particles displaying pneumococcal antigens induce local and systemic immune responses following intranasal immunization. Vaccine 2006, 24, 5434–5441, doi:10.1016/j.vaccine.2006.03.054.
[153]
Oliveira, M.L.; Monedero, V.; Miyaji, E.N.; Leite, L.C.; Lee Ho, P.; Perez-Martinez, G. Expression of Streptococcus pneumoniae antigens, PsaA (pneumococcal surface antigen A) and PspA (pneumococcal surface protein A) by Lactobacillus casei. FEMS Microbiol. Lett. 2003, 227, 25–31, doi:10.1016/S0378-1097(03)00645-1.
[154]
Waterfield, N.R.; le Page, R.W.; Wilson, P.W.; Wells, J.M. The isolation of lactococcal promoters and their use in investigating bacterial luciferase synthesis in Lactococcus lactis. Gene 1995, 165, 9–15, doi:10.1016/0378-1119(95)00484-N.
[155]
De Ruyter, P.G.; Kuipers, O.P.; de Vos, W.M. Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl. Environ. Microbiol. 1996, 62, 3662–3667.
[156]
Eichenbaum, Z.; Federle, M.J.; Marra, D.; de Vos, W.M.; Kuipers, O.P.; Kleerebezem, M.; Scott, J.R. Use of the lactococcal nisA promoter to regulate gene expression in gram-positive bacteria: Comparison of induction level and promoter strength. Appl. Environ. Microbiol. 1998, 64, 2763–2769.
[157]
De Vos, W.M. Gene expression systems for lactic acid bacteria. Curr. Opin. Microbiol. 1999, 2, 289–295, doi:10.1016/S1369-5274(99)80050-2.
[158]
Leenhouts, K.; Buist, G.; Kok, J. Anchoring of proteins to lactic acid bacteria. Antonie Van Leeuwenhoek 1999, 76, 367–376, doi:10.1023/A:1002095802571.
[159]
Le Loir, Y.; Gruss, A.; Ehrlich, S.D.; Langella, P. A nine-residue synthetic propeptide enhances secretion efficiency of heterologous proteins in Lactococcus lactis. J. Bacteriol. 1998, 180, 1895–1903.
[160]
Le Loir, Y.; Nouaille, S.; Commissaire, J.; Bretigny, L.; Gruss, A.; Langella, P. Signal peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis. Appl. Environ. Microbiol. 2001, 67, 4119–4127, doi:10.1128/AEM.67.9.4119-4127.2001.
[161]
Reveneau, N.; Geoffroy, M.C.; Locht, C.; Chagnaud, P.; Mercenier, A. Comparison of the immune responses induced by local immunizations with recombinant Lactobacillus plantarum producing tetanus toxin fragment C in different cellular locations. Vaccine 2002, 20, 1769–1777, doi:10.1016/S0264-410X(02)00027-0.
[162]
Asensi, G.F.; de Sales, N.F.; Dutra, F.F.; Feijo, D.F.; Bozza, M.T.; Ulrich, R.G.; Miyoshi, A.; de Morais, K.; Azevedo, V.A.; Silva, J.T.; et al. Oral immunization with Lactococcus lactis secreting attenuated recombinant staphylococcal enterotoxin B induces a protective immune response in a murine model. Microb. Cell Fact. 2013, 12, doi:10.1186/1475-2859-12-32.
[163]
Marelli, B.; Perez, A.R.; Banchio, C.; De Mendoza, D.; Magni, C. Oral immunization with live Lactococcus lactis expressing rotavirus VP8 subunit induces specific immune response in mice. J. Virol. Methods 2011, 175, 28–37, doi:10.1016/j.jviromet.2011.04.011.
[164]
Wu, H.Y.; Nahm, M.H.; Guo, Y.; Russell, M.W.; Briles, D.E. Intranasal immunization of mice with PspA (pneumococcal surface protein A) can prevent intranasal carriage, pulmonary infection, and sepsis with Streptococcus pneumonia. J. Infect. Dis. 1997, 175, 839–846, doi:10.1086/513980.
[165]
Yamamoto, M.; McDaniel, L.S.; Kawabata, K.; Briles, D.E.; Jackson, R.J.; McGhee, J.R.; Kiyono, H. Oral immunization with PspA elicits protective humoral immunity against Streptococcus pneumoniae infection. Infect. Immun. 1997, 65, 640–644.
[166]
Green, B.A.; Zhang, Y.; Masi, A.W.; Barniak, V.; Wetherell, M.; Smith, R.P.; Reddy, M.S.; Zhu, D. PppA, a surface-exposed protein of Streptococcus pneumoniae, elicits cross-reactive antibodies that reduce colonization in a murine intranasal immunization and challenge model. Infect. Immun. 2005, 73, 981–989, doi:10.1128/IAI.73.2.981-989.2005.
[167]
Kiyono, H.; Fukuyama, S. NALT- versus Peyer’s-patch-mediated mucosal immunity. Nat. Rev. Immunol. 2004, 4, 699–710, doi:10.1038/nri1439.
Davidson, L.E.; Fiorino, A.M.; Snydman, D.R.; Hibberd, P.L. Lactobacillus GG as an immune adjuvant for live-attenuated influenza vaccine in healthy adults: A randomized double-blind placebo-controlled trial. Eur. J. Clin. Nutr. 2011, 65, 501–507, doi:10.1038/ejcn.2010.289.
[170]
International Centre for Diarrhoeal Disease Research, Bangladesh. Effect of probiotic on immunogenicity of oral cholera vaccine: 2007–2012. Available online: http://clinicaltrials.gov/show/NCT00464867 (accessed on 11 October 2013).
[171]
Program for Appropriate Technology in Health. Zinc and/or probiotic supplementation of rotavirus and oral polio virus vaccines: 2012–2013. Available online: http://clinicaltrials.gov/show/NCT01616693 (accessed on 11 October 2013).
[172]
Wells, J.M.; Mercenier, A. Lactic acid bacteria as mucosal delivery systems. In Genetics of Lactic Acid Bacteria; Wood, B.J.B., Warner, P.J., Eds.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2003; pp. 261–290.
[173]
Islam, M.R.; Nagao, J.; Zendo, T.; Sonomoto, K. Antimicrobial mechanism of lantibiotics. Biochem. Soc. Trans. 2012, 40, 1528–1533, doi:10.1042/BST20120190.
[174]
Toomey, N.; Monaghan, A.; Fanning, S.; Bolton, D.J. Assessment of antimicrobial resistance transfer between lactic acid bacteria and potential foodborne pathogens using in vitro methods and mating in a food matrix. Foodborne Pathog. Dis. 2009, 6, 925–933, doi:10.1089/fpd.2009.0278.
[175]
Begde, D.; Bundale, S.; Mashitha, P.; Rudra, J.; Nashikkar, N.; Upadhyay, A. Immunomodulatory efficacy of nisin—A bacterial lantibiotic peptide. J. Pept. Sci. 2011, 17, 438–444, doi:10.1002/psc.1341.
[176]
Sorensen, K.I.; Larsen, R.; Kibenich, A.; Junge, M.P.; Johansen, E. A food-grade cloning system for industrial strains of Lactococcus lactis. Appl. Environ. Microbiol. 2000, 66, 1253–1258, doi:10.1128/AEM.66.4.1253-1258.2000.
[177]
Glenting, J.; Madsen, S.M.; Vrang, A.; Fomsgaard, A.; Israelsen, H. A plasmid selection system in Lactococcus lactis and its use for gene expression in L. lactis and human kidney fibroblasts. Appl. Environ. Microbiol. 2002, 68, 5051–5056, doi:10.1128/AEM.68.10.5051-5056.2002.
[178]
Bron, P.A.; Benchimol, M.G.; Lambert, J.; Palumbo, E.; Deghorain, M.; Delcour, J.; de Vos, W.M.; Kleerebezem, M.; Hols, P. Use of the alr gene as a food-grade selection marker in lactic acid bacteria. Appl. Environ. Microbiol. 2002, 68, 5663–5670, doi:10.1128/AEM.68.11.5663-5670.2002.
[179]
Steidler, L.; Neirynck, S.; Huyghebaert, N.; Snoeck, V.; Vermeire, A.; Goddeeris, B.; Cox, E.; Remon, J.P.; Remaut, E. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat. Biotechnol. 2003, 21, 785–789, doi:10.1038/nbt840.
[180]
Dickely, F.; Nilsson, D.; Hansen, E.B.; Johansen, E. Isolation of Lactococcus lactis nonsense suppressors and construction of a food-grade cloning vector. Mol. Microbiol. 1995, 15, 839–847, doi:10.1111/j.1365-2958.1995.tb02354.x.
[181]
Maassen, C.B.; van Holten-Neelen, C.; Balk, F.; den Bak-Glashouwer, M.J.; Leer, R.J.; Laman, J.D.; Boersma, W.J.; Claassen, E. Strain-dependent induction of cytokine profiles in the gut by orally administered Lactobacillus strains. Vaccine 2000, 18, 2613–2623, doi:10.1016/S0264-410X(99)00378-3.
[182]
Perdigón, G.; Galdeano, C.M.; Valdez, J.C.; Medici, M. Interaction of lactic acid bacteria with the gut immune system. Eur. J. Clin. Nutr. 2002, 56, S21–S26, doi:10.1038/sj.ejcn.1601658.
[183]
Fang, H.; Elina, T.; Heikki, A.; Seppo, S. Modulation of humoral immune response through probiotic intake. FEMS Immunol. Med. Microbiol. 2000, 29, 47–52, doi:10.1111/j.1574-695X.2000.tb01504.x.
[184]
Maassen, C.B.; Boersma, W.J.; van Holten-Neelen, C.; Claassen, E.; Laman, J.D. Growth phase of orally administered Lactobacillus strains differentially affects IgG1/IgG2a ratio for soluble antigens: Implications for vaccine development. Vaccine 2003, 21, 2751–2757, doi:10.1016/S0264-410X(03)00220-2.
[185]
Pelto, L.; Isolauri, E.; Lilius, E.M.; Nuutila, J.; Salminen, S. Probiotic bacteria down-regulate the milk-induced inflammatory response in milk-hypersensitive subjects but have an immunostimulatory effect in healthy subjects. Clin. Exp. Allergy 1998, 28, 1474–1479, doi:10.1046/j.1365-2222.1998.00449.x.
[186]
Hanson, M.S.; Lapcevich, C.V.; Haun, S.L. Progress on development of the live BCG recombinant vaccine vehicle for combined vaccine delivery. Ann. NY Acad. Sci. 1995, 754, 214–221, doi:10.1111/j.1749-6632.1995.tb44453.x.
[187]
Ritz, N.; Mui, M.; Balloch, A.; Curtis, N. Non-specific effect of Bacille Calmette-Guerin vaccine on the immune response to routine immunisations. Vaccine 2013, 31, 3098–3103, doi:10.1016/j.vaccine.2013.03.059.
[188]
Briles, D.E.; Nahm, M.; Schroer, K.; Davie, J.; Baker, P.; Kearney, J.; Barletta, R. Antiphosphocholine antibodies found in normal mouse serum are protective against intravenous infection with type 3 Streptococcus pneumoniae. J. Exp. Med. 1981, 153, 694–705, doi:10.1084/jem.153.3.694.
He, T.C.; Zhou, S.; da Costa, L.T.; Yu, J.; Kinzler, K.W.; Vogelstein, B. A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 1998, 95, 2509–2514.
Lal, M.; Priddy, S.; Bourgeois, L.; Walker, R.; Pebley, W.; Brown, J.; Desai, J.; Darsley, M.J.; Kristensen, D.; Chen, D. Development of a fast-dissolving tablet formulation of a live attenuated enterotoxigenic E. coli vaccine candidate. Vaccine 2013, 31, 4759–4764, doi:10.1016/j.vaccine.2013.08.010.
[194]
Curtiss, R., III. Arizona State University, Tempe, AZ, USA. Unpublished data, 2013.