全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Vaccines  2014 

Advancing Toward HIV-1 Vaccine Efficacy through the Intersections of Immune Correlates

DOI: 10.3390/vaccines2010015

Keywords: HIV-1, vaccine, immune correlate, protection, immunity, clinical trials

Full-Text   Cite this paper   Add to My Lib

Abstract:

Interrogating immune correlates of infection risk for efficacious and non-efficacious HIV-1 vaccine clinical trials have provided hypotheses regarding the mechanisms of induction of protective immunity to HIV-1. To date, there have been six HIV-1 vaccine efficacy trials (VAX003, Vaxgen, Inc., San Francisco, CA, USA), VAX004 (Vaxgen, Inc.), HIV-1 Vaccine Trials Network (HVTN) 502 (Step), HVTN 503 (Phambili), RV144 (sponsored by the U.S. Military HIV Research Program, MHRP) and HVTN 505). Cellular, humoral, host genetic and virus sieve analyses of these human clinical trials each can provide information that may point to potentially protective mechanisms for vaccine-induced immunity. Critical to staying on the path toward development of an efficacious vaccine is utilizing information from previous human and non-human primate studies in concert with new discoveries of basic HIV-1 host-virus interactions. One way that past discoveries from correlate analyses can lead to novel inventions or new pathways toward vaccine efficacy is to examine the intersections where different components of the correlate analyses overlap (e.g., virus sieve analysis combined with humoral correlates) that can point to mechanistic hypotheses. Additionally, differences in durability among vaccine-induced T- and B-cell responses indicate that time post-vaccination is an important variable. Thus, understanding the nature of protective responses, the degree to which such responses have, or have not, as yet, been induced by previous vaccine trials and the design of strategies to induce durable T- and B-cell responses are critical to the development of a protective HIV-1 vaccine.

References

[1]  Flynn, N.M.; Forthal, D.N.; Harro, C.D.; Judson, F.N.; Mayer, K.H.; Para, M.F.; rgp120 HIV Vaccine Study Group. Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J. Infect. Dis. 2005, 191, 654–665, doi:10.1086/428404.
[2]  Pitisuttithum, P.; Gilbert, P.; Gurwith, M.; Heyward, W.; Martin, M.; van Griensven, F.; Hu, D.; Tappero, J.W.; Choopanya, K.; Bangkok Vaccine Evaluation Group. Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. J. Infect. Dis. 2006, 194, 1661–1671, doi:10.1086/508748.
[3]  Buchbinder, S.P.; Mehrotra, D.V.; Duerr, A.; Fitzgerald, D.W.; Mogg, R.; Li, D.; Gilbert, P.B.; Lama, J.R.; Marmor, M.; del Rio, C.; et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the step study): A double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 2008, 372, 1881–1893, doi:10.1016/S0140-6736(08)61591-3.
[4]  Gray, G.E.; Allen, M.; Moodie, Z.; Churchyard, G.; Bekker, L.G.; Nchabeleng, M.; Mlisana, K.; Metch, B.; de Bruyn, G.; Latka, M.H.; et al. Safety and efficacy of the HVTN 503/Phambili study of a clade-b-based HIV-1 vaccine in South Africa: A double-blind, randomised, placebo-controlled test-of-concept phase 2b study. Lancet Infect. Dis. 2011, 11, 507–515, doi:10.1016/S1473-3099(11)70098-6.
[5]  Rerks-Ngarm, S.; Pitisuttithum, P.; Nitayaphan, S.; Kaewkungwal, J.; Chiu, J.; Paris, R.; Premsri, N.; Namwat, C.; de Souza, M.; Adams, E.; et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 2009, 361, 2209–2220, doi:10.1056/NEJMoa0908492.
[6]  Hammer, S.M.; Sobieszczyk, M.E.; Janes, H.; Karuna, S.T.; Mulligan, M.J.; Grove, D.; Koblin, B.A.; Buchbinder, S.P.; Keefer, M.C.; Tomaras, G.D.; et al. Efficacy trial of a DNA/rAd5 HIV-1 preventive vaccine. N. Engl. J. Med. 2013, 369, 2083–2092.
[7]  Gilbert, P.B.; Peterson, M.L.; Follmann, D.; Hudgens, M.G.; Francis, D.P.; Gurwith, M.; Heyward, W.L.; Jobes, D.V.; Popovic, V.; Self, S.G.; et al. Correlation between immunologic responses to a recombinant glycoprotein 120 vaccine and incidence of HIV-1 infection in a phase 3 HIV-1 preventive vaccine trial. J. Infect. Dis. 2005, 191, 666–677, doi:10.1086/428405.
[8]  Forthal, D.N.; Gilbert, P.B.; Landucci, G.; Phan, T. Recombinant gp120 vaccine-induced antibodies inhibit clinical strains of HIV-1 in the presence of Fc receptor-bearing effector cells and correlate inversely with HIV infection rate. J. Immunol. 2007, 178, 6596–6603.
[9]  Forthal, D.N.; Gabriel, E.E.; Wang, A.; Landucci, G.; Phan, T.B. Association of fcgamma receptor IIIa genotype with the rate of HIV infection after gp120 vaccination. Blood 2012, 120, 2836–2842, doi:10.1182/blood-2012-05-431361.
[10]  Huang, Y.; Gilbert, P.B. Comparing biomarkers as principal surrogate endpoints. Biometrics 2011, 67, 1442–1451, doi:10.1111/j.1541-0420.2011.01603.x.
[11]  Huang, Y.; Duerr, A.; Moodie, Z.; Frahm, N.; DeRosa, S.C.; McElrath, J.; Gilbert, P. Immune-correlates analysis of the step HIV vaccine efficacy trial, a post-hoc analysis of HIV-specific and non-specific cellular immune responses. In AIDS Vaccine, Barcelona, Spain, 7–10 October 2013.
[12]  Haynes, B.F.; Gilbert, P.B.; McElrath, M.J.; Zolla-Pazner, S.; Tomaras, G.D.; Alam, S.M.; Evans, D.T.; Montefiori, D.C.; Karnasuta, C.; Sutthent, R.; et al. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N. Engl. J. Med. 2012, 366, 1275–1286, doi:10.1056/NEJMoa1113425.
[13]  Zolla-Pazner, S.; DeCamp, A.; Gilbert, P.; Williams, C.; Yates, N.L.; Williams, W.; Howington, R.; Fong, Y.; Morris, D.E.; Soderberg, K.E.; et al. Vaccine-induced IgG antibodies to V1V2 regions of multiple HIV-1 subtypes correlate with decreased risk of HIV-1 infection. PLoS One 2013. in press.
[14]  Yates, N.L.; Liao, H.-X.; Fong, Y.; DeCamp, A.; Vandergrift, N.; Williams, W.T.; Alam, M.; Ferrari, G.; Yang, Z.Y.; Seaton, K.; et al. Spectrum of Vaccine-Elicited Humoral Responses. In HIV-1 Vaccines, Keystone Symposia, Keystone, CO, 10–15 February 2013.
[15]  Gottardo, R.; Bailer, R.T.; Korber, B.T.; Gnanakaran, S.; Phillips, J.; Shen, X.; Tomaras, G.D.; Turk, E.; Imholte, G.; Eckler, L.; et al. Plasma IgG to linear epitopes in the V2 and V3 regions of HIV-1 gp120 correlate with a reduced risk of infection in the RV144 vaccine efficacy trial. PLoS One 2013, 8, e75665.
[16]  Rolland, M.; Gilbert, P. Evaluating immune correlates in HIV type 1 vaccine efficacy trials: What RV144 may provide. AIDS Res. Hum. Retroviruses 2012, 28, 400–404, doi:10.1089/aid.2011.0240.
[17]  Qin, L.; Gilbert, P.B.; Corey, L.; McElrath, M.J.; Self, S.G. A framework for assessing immunological correlates of protection in vaccine trials. J. Infect. Dis. 2007, 196, 1304–1312, doi:10.1086/522428.
[18]  Plotkin, S.A. Vaccines: Correlates of vaccine-induced immunity. Clin. Infect. Dis. 2008, 47, 401–409, doi:10.1086/589862.
[19]  Plotkin, S.A.; Gilbert, P.B. Nomenclature for immune correlates of protection after vaccination. Clin. Infect. Dis. 2012, 54, 1615–1617, doi:10.1093/cid/cis238.
[20]  Gilbert, P.; Vaccine and Infectious Disease and Public Health Sciences Divisions, Fred Hutchinson Cancer Research Center, and the Department of Biostatistics, University of Washington, Seattle, WA, USA.. Unpublished observations2013.
[21]  Gilbert, P.B.; McKeague, I.W.; Sun, Y. The 2-sample problem for failure rates depending on a continuous mark: An application to vaccine efficacy. Biostatistics 2008, 9, 263–276, doi:10.1093/biostatistics/kxm028.
[22]  Gilbert, P.B.; Wu, C.; Jobes, D.V. Genome scanning tests for comparing amino acid sequences between groups. Biometrics 2008, 64, 198–207, doi:10.1111/j.1541-0420.2007.00845.x.
[23]  Rolland, M.; Tovanabutra, S.; deCamp, A.C.; Frahm, N.; Gilbert, P.B.; Sanders-Buell, E.; Heath, L.; Magaret, C.A.; Bose, M.; Bradfield, A.; et al. Genetic impact of vaccination on breakthrough HIV-1 sequences from the step trial. Nat. Med. 2011, 17, 366–371, doi:10.1038/nm.2316.
[24]  Rolland, M.; Edlefsen, P.T.; Larsen, B.B.; Tovanabutra, S.; Sanders-Buell, E.; Hertz, T.; deCamp, A.C.; Carrico, C.; Menis, S.; Magaret, C.A.; et al. Increased HIV-1 vaccine efficacy against viruses with genetic signatures in Env V2. Nature 2012, 490, 417–420, doi:10.1038/nature11519.
[25]  Liao, H.X.; Bonsignori, M.; Alam, S.M.; McLellan, J.S.; Tomaras, G.D.; Moody, M.A.; Kozink, D.M.; Hwang, K.K.; Chen, X.; Tsao, C.Y.; et al. Vaccine induction of antibodies against a structurally heterogeneous site of immune pressure within HIV-1 envelope protein variable regions 1 and 2. Immunity 2013, 38, 176–186.
[26]  Koup, R.A.; Safrit, J.T.; Cao, Y.; Andrews, C.A.; McLeod, G.; Borkowsky, W.; Farthing, C.; Ho, D.D. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J. Virol. 1994, 68, 4650–4655.
[27]  Borrow, P.; Lewicki, H.; Wei, X.; Horwitz, M.S.; Peffer, N.; Meyers, H.; Nelson, J.A.; Gairin, J.E.; Hahn, B.H.; Oldstone, M.B.; et al. Antiviral pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of ctl escape virus. Nat. Med. 1997, 3, 205–211, doi:10.1038/nm0297-205.
[28]  Goonetilleke, N.; Liu, M.K.; Salazar-Gonzalez, J.F.; Ferrari, G.; Giorgi, E.; Ganusov, V.V.; Keele, B.F.; Learn, G.H.; Turnbull, E.L.; Salazar, M.G.; et al. The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection. J. Exp. Med. 2009, 206, 1253–1272, doi:10.1084/jem.20090365.
[29]  Ferrari, G.; Korber, B.; Goonetilleke, N.; Liu, M.K.; Turnbull, E.L.; Salazar-Gonzalez, J.F.; Hawkins, N.; Self, S.; Watson, S.; Betts, M.R.; et al. Relationship between functional profile of HIV-1 specific CD8 T cells and epitope variability with the selection of escape mutants in acute HIV-1 infection. PLoS Pathog. 2011, 7, e1001273, doi:10.1371/journal.ppat.1001273.
[30]  Freel, S.A.; Picking, R.A.; Ferrari, G.; Ding, H.; Ochsenbauer, C.; Kappes, J.C.; Kirchherr, J.L.; Soderberg, K.A.; Weinhold, K.J.; Cunningham, C.K.; et al. Initial HIV-1 antigen-specific CD8+ T cells in acute HIV-1 infection inhibit transmitted/founder virus replication. J. Virol. 2012, 86, 6835–6846, doi:10.1128/JVI.00437-12.
[31]  McMichael, A.J.; Borrow, P.; Tomaras, G.D.; Goonetilleke, N.; Haynes, B.F. The immune response during acute HIV-1 infection: Clues for vaccine development. Nat. Rev. 2010, 10, 11–23.
[32]  Betts, M.R.; Nason, M.C.; West, S.M.; De Rosa, S.C.; Migueles, S.A.; Abraham, J.; Lederman, M.M.; Benito, J.M.; Goepfert, P.A.; Connors, M.; et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood 2006, 107, 4781–4789, doi:10.1182/blood-2005-12-4818.
[33]  Migueles, S.A.; Connors, M. Long-term nonprogressive disease among untreated HIV-infected individuals: Clinical implications of understanding immune control of HIV. JAMA 2010, 304, 194–201, doi:10.1001/jama.2010.925.
[34]  Freel, S.A.; Lamoreaux, L.; Chattopadhyay, P.K.; Saunders, K.; Zarkowsky, D.; Overman, R.G.; Ochsenbauer, C.; Edmonds, T.G.; Kappes, J.C.; Cunningham, C.K.; et al. Phenotypic and functional profile of HIV-inhibitory CD8 T cells elicited by natural infection and heterologous prime/boost vaccination. J. Virol. 2010, 84, 4998–5006.
[35]  Freel, S.A.; Saunders, K.O.; Tomaras, G.D. CD8(+)T-cell-mediated control of HIV-1 and SIV infection. Immunol. Res. 2011, 49, 135–146, doi:10.1007/s12026-010-8177-7.
[36]  Walker, B.D.; Yu, X.G. Unravelling the mechanisms of durable control of HIV-1. Nat. Rev. Immunol. 2013, 13, 487–498, doi:10.1038/nri3478.
[37]  Saez-Cirion, A.; Pancino, G. HIV controllers: A genetically determined or inducible phenotype? Immunol. Rev. 2013, 254, 281–294, doi:10.1111/imr.12076.
[38]  Hansen, S.G.; Sacha, J.B.; Hughes, C.M.; Ford, J.C.; Burwitz, B.J.; Scholz, I.; Gilbride, R.M.; Lewis, M.S.; Gilliam, A.N.; Ventura, A.B.; et al. Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms. Science 2013, 340, 1237874.
[39]  Hansen, S.G.; Ford, J.C.; Lewis, M.S.; Ventura, A.B.; Hughes, C.M.; Coyne-Johnson, L.; Whizin, N.; Oswald, K.; Shoemaker, R.; Swanson, T.; et al. Profound early control of highly pathogenic siv by an effector memory T-cell vaccine. Nature 2011, 473, 523–527.
[40]  Hansen, S.G.; Vieville, C.; Whizin, N.; Coyne-Johnson, L.; Siess, D.C.; Drummond, D.D.; Legasse, A.W.; Axthelm, M.K.; Oswald, K.; Trubey, C.M.; et al. Effector memory T cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nat. Med. 2009, 15, 293–299, doi:10.1038/nm.1935.
[41]  Fukazawa, Y.; Park, H.; Cameron, M.J.; Lefebvre, F.; Lum, R.; Coombes, N.; Mahyari, E.; Hagen, S.I.; Bae, J.Y.; Reyes, M.D., 3rd; et al. Lymph node T cell responses predict the efficacy of live attenuated siv vaccines. Nat. Med. 2012, 18, 1673–1681, doi:10.1038/nm.2934.
[42]  Reardon, S. HIV vaccine raised infection risk. Nature 2013, doi:10.1038/nature.2013.13971.
[43]  Frahm, N.; DeCamp, A.C.; Friedrich, D.P.; Carter, D.K.; Defawe, O.D.; Kublin, J.G.; Casimiro, D.R.; Duerr, A.; Robertson, M.N.; Buchbinder, S.P.; et al. Human adenovirus-specific T cells modulate HIV-specific T cell responses to an ad5-vectored HIV-1 vaccine. J. Clin. Invest. 2012, 122, 359–367, doi:10.1172/JCI60202.
[44]  McElrath, M.J.; De Rosa, S.C.; Moodie, Z.; Dubey, S.; Kierstead, L.; Janes, H.; Defawe, O.D.; Carter, D.K.; Hural, J.; Akondy, R.; et al. HIV-1 vaccine-induced immunity in the test-of-concept step study: A case-cohort analysis. Lancet 2008, 372, 1894–1905, doi:10.1016/S0140-6736(08)61592-5.
[45]  Gray, G.; Buchbinder, S.; Duerr, A. Overview of step and phambili trial results: Two phase IIb test-of-concept studies investigating the efficacy of mrk adenovirus type 5 gag/pol/nef subtype b HIV vaccine. Curr. Opin. HIV AIDS 2010, 5, 357–361.
[46]  Duerr, A.; Huang, Y.; Buchbinder, S.; Coombs, R.W.; Sanchez, J.; del Rio, C.; Casapia, M.; Santiago, S.; Gilbert, P.; Corey, L.; et al. Extended follow-up confirms early vaccine-enhanced risk of HIV acquisition and demonstrates waning effect over time among participants in a randomized trial of recombinant adenovirus HIV vaccine (step study). J. Infect. Dis. 2012, 206, 258–266, doi:10.1093/infdis/jis342.
[47]  Hertz, T.; Ahmed, H.; Friedrich, D.P.; Casimiro, D.R.; Self, S.G.; Corey, L.; McElrath, M.J.; Buchbinder, S.; Horton, H.; Frahm, N.; et al. HIV-1 vaccine-induced T-cell responses cluster in epitope hotspots that differ from those induced in natural infection with HIV-1. PLoS Pathog. 2013, 9, e1003404, doi:10.1371/journal.ppat.1003404.
[48]  Fitzgerald, D.W.; Janes, H.; Robertson, M.; Coombs, R.; Frank, I.; Gilbert, P.; Loufty, M.; Mehrotra, D.; Duerr, A.; Step Study Protocol Team. An ad5-vectored HIV-1 vaccine elicits cell-mediated immunity but does not affect disease progression in HIV-1-infected male subjects: Results from a randomized placebo-controlled trial (the step study). J. Infect. Dis. 2011, 203, 765–772, doi:10.1093/infdis/jiq114.
[49]  Migueles, S.A.; Rood, J.E.; Berkley, A.M.; Guo, T.; Mendoza, D.; Patamawenu, A.; Hallahan, C.W.; Cogliano, N.A.; Frahm, N.; Duerr, A.; et al. Trivalent adenovirus type 5 HIV recombinant vaccine primes for modest cytotoxic capacity that is greatest in humans with protective HLA class I alleles. PLoS Pathog. 2011, 7, e1002002, doi:10.1371/journal.ppat.1002002.
[50]  Janes, H.; Friedrich, D.P.; Krambrink, A.; Smith, R.J.; Kallas, E.; Horton, H.; Casimiro, D.R.; Carrington, M.; Geraghty, D.; Gilbert, P.; et al. Vaccine-induced Gag-specific T cells are associated with reduced viremia after HIV infection. J. Infect. Dis. 2013, doi:10.1093/infdis/jit322.
[51]  Janes, H.; Frahm, N.; DeCamp, A.; Rolland, M.; Gabriel, E.; Wolfson, J.; Hertz, T.; Kallas, E.; Goepfert, P.; Friedrich, D.P.; et al. MrkAd5 HIV-1 gag/pol/nef vaccine-induced T-cell responses inadequately predict distance of breakthrough HIV-1 sequences to the vaccine or viral load. PLoS One 2012, 7, e43396, doi:10.1371/journal.pone.0043396.
[52]  Gilbert, P.; Wang, M.; Wrin, T.; Petropoulos, C.; Gurwith, M.; Sinangil, F.; D’Souza, P.; Rodriguez-Chavez, I.R.; DeCamp, A.; Giganti, M.; et al. Magnitude and breadth of a nonprotective neutralizing antibody response in an efficacy trial of a candidate HIV-1 gp120 vaccine. J. Infect. Dis. 2010, 202, 595–605, doi:10.1086/654816.
[53]  Montefiori, D.C.; Karnasuta, C.; Huang, Y.; Ahmed, H.; Gilbert, P.; de Souza, M.S.; McLinden, R.; Tovanabutra, S.; Laurence-Chenine, A.; Sanders-Buell, E.; et al. Magnitude and breadth of the neutralizing antibody response in the RV144 and VAX003 HIV-1 vaccine efficacy trials. J. Infect. Dis. 2012, 206, 431–441, doi:10.1093/infdis/jis367.
[54]  Tomaras, G.D.; Ferrari, G.; Shen, X.; Alam, S.M.; Liao, H.X.; Pollara, J.; Bonsignori, M.; Moody, M.A.; Fong, Y.; Chen, X.; et al. Vaccine-induced plasma iga specific for the C1 region of the HIV-1 envelope blocks binding and effector function of IgG. Proc. Natl. Acad. Sci. USA 2013, 110, 9019–9024, doi:10.1073/pnas.1301456110.
[55]  De Souza, M.S.; Ratto-Kim, S.; Chuenarom, W.; Schuetz, A.; Chantakulkij, S.; Nuntapinit, B.; Valencia-Micolta, A.; Thelian, D.; Nitayaphan, S.; Pitisuttithum, P.; et al. The Thai phase III trial (RV144) vaccine regimen induces T cell responses that preferentially target epitopes within the V2 region of HIV-1 envelope. J. Immunol. 2012, 188, 5166–5176, doi:10.4049/jimmunol.1102756.
[56]  Alam, S.M.; Liao, H.X.; Tomaras, G.D.; Bonsignori, M.; Tsao, C.Y.; Hwang, K.K.; Chen, H.; Lloyd, K.E.; Bowman, C.; Sutherland, L.; et al. Antigenicity and immunogenicity of RV144 vaccine AIDSVAX clade E envelope immunogen is enhanced by a gp120 N-terminal deletion. J. Virol. 2013, 87, 1554–1568, doi:10.1128/JVI.00718-12.
[57]  Zolla-Pazner, S.; deCamp, A.C.; Cardozo, T.; Karasavvas, N.; Gottardo, R.; Williams, C.; Morris, D.E.; Tomaras, G.; Rao, M.; Billings, E.; et al. Analysis of V2 antibody responses induced in vaccinees in the ALVAC/AIDSVAX HIV-1 vaccine efficacy trial. PloS One 2013, 8, e53629, doi:10.1371/journal.pone.0053629.
[58]  Karasavvas, N.; Billings, E.; Rao, M.; Williams, C.; Zolla-Pazner, S.; Bailer, R.T.; Koup, R.A.; Madnote, S.; Arworn, D.; Shen, X.; et al. The Thai phase III HIV type 1 vaccine trial (RV144) regimen induces antibodies that target conserved regions within the V2 loop of gp120. AIDS Res. Hum. Retroviruses 2012, 28, 1444–1457, doi:10.1089/aid.2012.0103.
[59]  Ferrari, G.; Pollara, J.; Kozink, D.; Harms, T.; Drinker, M.; Freel, S.; Moody, M.A.; Alam, S.M.; Tomaras, G.D.; Ochsenbauer, C.; et al. An HIV-1 gp120 envelope human monoclonal antibody that recognizes a c1 conformational epitope mediates potent antibody-dependent cellular cytotoxicity (ADCC) activity and defines a common ADCC epitope in human HIV-1 serum. J. Virol. 2011, 85, 7029–7036, doi:10.1128/JVI.00171-11.
[60]  Bonsignori, M.; Pollara, J.; Moody, M.A.; Alpert, M.D.; Chen, X.; Hwang, K.K.; Gilbert, P.B.; Huang, Y.; Gurley, T.C.; Kozink, D.M.; et al. Antibody-dependent cellular cytotoxicity-mediating antibodies from an HIV-1 vaccine efficacy trial target multiple epitopes and preferentially use the VH1 gene family. J. Virol. 2012, 86, 11521–11532, doi:10.1128/JVI.01023-12.
[61]  Tomaras, G.D.; Yates, N.L.; Liu, P.; Qin, L.; Fouda, G.G.; Chavez, L.L.; Decamp, A.C.; Parks, R.J.; Ashley, V.C.; Lucas, J.T.; et al. Initial B-cell responses to transmitted human immunodeficiency virus type 1: Virion-binding immunoglobulin IgM and IgG antibodies followed by plasma anti-gp41 antibodies with ineffective control of initial viremia. J. Virol. 2008, 82, 12449–12463, doi:10.1128/JVI.01708-08.
[62]  Haynes, B.F.; Korber, B.; Liao, H.; Tomaras, G.; Duke Human Vaccine Institute, Duke University, Durham, NC, USA and Los Alamos National Laboratory, Theoretical Division, Los Alamos, NM, USA.. Unpublished observations2013.
[63]  Liu, P.; Yates, N.L.; Shen, X.; Bonsignori, M.; Moody, M.A.; Liao, H.X.; Fong, Y.; Alam, S.M.; Overman, R.G.; Denny, T.; et al. Infectious virion capture by HIV-1 gp120-specific IgG from RV144 vaccinees. J. Virol. 2013, 87, 7828–7836, doi:10.1128/JVI.02737-12.
[64]  Tomaras, G.; Shen, X.; Seaton, K.; Janes, H.; Grove, D.; DeCamp, A.; Fong, Y.; Liao, H.; Yang, Z.Y.; Xu, T.; et al. Vaccine induced antibody responses in HVTN 505, a phase IIb HIV-1 efficacy trial. In AIDS Vaccine, Barcelona, Spain, 7–10 October 2013.
[65]  Rolland, M.; Edlefsen, P.T.; Gottardo, R.; Montefiori, D.; Zolla-Pazner, S.; Moody, M.A.; Liao, H.; Liu, P.; Tomaras, G.; Haynes, B.F.; et al. Genetic and immunological evidence for a role of Env-V3 antibodies in the RV144 trial. In AIDS Vaccine, Barcelona, Spain, 7–10 October 2013.
[66]  Hertz, T.; Gartland, A.; Janes, H.; Li, S.S.; Fong, Y.; Tomaras, G.; Morris, D.E.; Geraghty, D.; Kijak, G.H.; Edlefsen, P.T.; et al. T-cell based sieve analysis ties HLA A*02 to vaccine efficacy and iga-c1 immune correlate in RV144 Thai trial. Retrovirology 2012, 9, O61, doi:10.1186/1742-4690-9-S2-O61.
[67]  Prentice, H.; Geraghty, D.; Tomaras, G.; Fong, Y.; Nelson, W.; Kijak, G.H.; Zolla-Pazner, S.; Nitayaphan, S.; Rerks-Ngarm, S.; Kaewkungwal, J.; et al. HLA class II genes interact with the immune correlates from the RV144 vaccine efficacy trial and impact HIV-1 acquisition. In AIDS Vaccine, Barcelona, Spain, 7–10 October 2013.
[68]  Li, S.; Gilbert, P.; Tomaras, G.; Kijak, G.H.; Ferrari, G.; Thomas, R.; Zolla-Pazner, S.; Evans, D.T.; Li, Y.; Gottardo, R.; et al. Association of FcRIIc polymorphism with vaccine efficacy and correlates of HIV-1 infection risk in RV144. In AIDS Vaccine, Barcelona, Spain, 7–10 October 2013.
[69]  Roederer, M. Single cell transcriptomics: Measuring quality and quantity. In HIV-1 Vaccines/B Cell Development and Function, Keystone Symposia, Keystone, CO, USA, 10–15 February 2013.
[70]  Robb, M.L.; Rerks-Ngarm, S.; Nitayaphan, S.; Pitisuttithum, P.; Kaewkungwal, J.; Kunasol, P.; Khamboonruang, C.; Thongcharoen, P.; Morgan, P.; Benenson, M.; et al. Risk behaviour and time as covariates for efficacy of the HIV vaccine regimen ALVAC-HIV (vcp1521) and AIDSVAX B/E: A post-hoc analysis of the Thai phase 3 efficacy trial RV144. Lancet Infect. Dis. 2012, 12, 531–537, doi:10.1016/S1473-3099(12)70088-9.
[71]  Shea, P.R.; Shianna, K.V.; Carrington, M.; Goldstein, D.B. Host genetics of HIV acquisition and viral control. Annu. Rev. Med. 2013, 64, 203–217, doi:10.1146/annurev-med-052511-135400.
[72]  Carrington, M.; Walker, B.D. Immunogenetics of spontaneous control of HIV. Annu. Rev. Med. 2012, 63, 131–145.
[73]  Siegrist, C. Vaccine Immunology. In Vaccines; Plotkin, S.A., Orenstein, W.A., Offit, P.A., Eds.; Elsevier: Philadelphia, PA, USA, 2008; pp. 17–36.
[74]  Amanna, I.J.; Slifka, M.K. Contributions of humoral and cellular immunity to vaccine-induced protection in humans. Virology 2011, 411, 206–215, doi:10.1016/j.virol.2010.12.016.
[75]  Lambert, P.H.; Liu, M.; Siegrist, C.A. Can successful vaccines teach us how to induce efficient protective immune responses? Nat. Med. 2005, 11, S54–S62, doi:10.1038/nm1216.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133