全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Vaccines  2013 

Developing Combined HIV Vaccine Strategies for a Functional Cure

DOI: 10.3390/vaccines1040481

Keywords: HIV, therapeutic vaccine, CD8+ T cells, reactivation of viral reservoirs, combination therapy, functional cure

Full-Text   Cite this paper   Add to My Lib

Abstract:

Increasing numbers of HIV-infected individuals have access to potent antiretroviral drugs that control viral replication and decrease the risk of transmission. However, there is no cure for HIV and new strategies have to be developed to reach an eradication of the virus or a natural control of viral replication in the absence of drugs (functional cure). Therapeutic vaccines against HIV have been evaluated in many trials over the last 20 years and important knowledge has been gained from these trials. However, the major obstacle to HIV eradication is the persistence of latent proviral reservoirs. Different molecules are currently tested in ART-treated subjects to reactivate these latent reservoirs. Such anti-latency agents should be combined with a vaccination regimen in order to control or eradicate reactivated latently-infected cells. New in vitro assays should also be developed to assess the success of tested therapeutic vaccines by measuring the immune-mediated killing of replication-competent HIV reservoir cells. This review provides an overview of the current strategies to combine HIV vaccines with anti-latency agents that could act as adjuvant on the vaccine-induced immune response as well as new tools to assess the efficacy of these approaches.

References

[1]  Corbeau, P.; Reynes, J. Immune reconstitution under antiretroviral therapy: The new challenge in HIV-1 infection. Blood 2011, 117, 5582–5590, doi:10.1182/blood-2010-12-322453.
[2]  Hunt, P.W. HIV and inflammation: Mechanisms and consequences. Curr. HIV/AIDS Rep. 2012, 9, 139–147.
[3]  Vanham, G.; van Gulck, E. Can immunotherapy be useful as a “functional cure” for infection with Human Immunodeficiency Virus-1? Retrovirology 2012, 9, doi:10.1186/1742-4690-9-72.
[4]  Carrington, M.; Walker, B.D. Immunogenetics of spontaneous control of HIV. Annu. Rev. Med. 2012, 63, 131–145, doi:10.1146/annurev-med-062909-130018.
[5]  Mcmichael, A.J.; Borrow, P.; Tomaras, G.D.; Goonetilleke, N.; Haynes, B.F. The immune response during acute HIV-1 infection: Clues for vaccine development. Nat. Rev. Immunol. 2009, 10, 11–23, doi:10.1038/ni0109-11.
[6]  Chun, T.W.; Finzi, D.; Margolick, J.; Chadwick, K.; Schwartz, D.; Siliciano, R.F. In vivo fate of HIV-1-infected T cells: Quantitative analysis of the transition to stable latency. Nat. Med. 1995, 1, 1284–1290, doi:10.1038/nm1295-1284.
[7]  Finzi, D.; Hermankova, M.; Pierson, T.; Carruth, L.M.; Buck, C.; Chaisson, R.E.; Quinn, T.C.; Chadwick, K.; Margolick, J.; Brookmeyer, R.; et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 1997, 278, 1295–1300.
[8]  Wong, J.K.; Hezareh, M.; Gunthard, H.F.; Havlir, D.V.; Ignacio, C.C.; Spina, C.A.; Richman, D.D. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 1997, 278, 1291–1295, doi:10.1126/science.278.5341.1291.
[9]  Chun, T.W.; Engel, D.; Berrey, M.M.; Shea, T.; Corey, L.; Fauci, A.S. Early establishment of a pool of latently infected, resting CD4+ T cells during primary HIV-1 infection. Proc. Natl. Acad. Sci. USA 1998, 95, 8869–8873.
[10]  Finzi, D.; Blankson, J.; Siliciano, J.D.; Margolick, J.B.; Chadwick, K.; Pierson, T.; Smith, K.; Lisziewicz, J.; Lori, F.; Flexner, C.; et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat. Med. 1999, 5, 512–517, doi:10.1038/8394.
[11]  Deeks, S.G.; Autran, B.; Berkhout, B.; Benkirane, M.; Cairns, S.; Chomont, N.; Chun, T.W.; Churchill, M.; di Mascio, M.; Katlama, C.; et al. Towards an HIV cure: A global scientific strategy. Nat. Rev. Immunol. 2012, 12, 607–614, doi:10.1038/nri3262.
[12]  Shan, L.; Deng, K.; Shroff, N.S.; Durand, C.M.; Rabi, S.A.; Yang, H.C.; Zhang, H.; Margolick, J.B.; Blankson, J.N.; Siliciano, R.F. Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation. Immunity 2012, 36, 491–501, doi:10.1016/j.immuni.2012.01.014.
[13]  Archin, N.M.; Liberty, A.L.; Kashuba, A.D.; Choudhary, S.K.; Kuruc, J.D.; Crooks, A.M.; Parker, D.C.; Anderson, E.M.; Kearney, M.F.; Strain, M.C.; et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 2012, 487, 482–485, doi:10.1038/nature11286.
[14]  Hutter, G.; Nowak, D.; Mossner, M.; Ganepola, S.; Mussig, A.; Allers, K.; Schneider, T.; Hofmann, J.; Kucherer, C.; Blau, O.; et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N. Engl. J. Med. 2009, 360, 692–698.
[15]  Henrich, T.J.; Hu, Z.; Li, J.Z.; Sciaranghella, G.; Busch, M.P.; Keating, S.M.; Gallien, S.; Lin, N.H.; Giguel, F.F.; Lavoie, L.; et al. Long-term reduction in peripheral blood HIV type 1 reservoirs following reduced-intensity conditioning allogeneic stem cell transplantation. J. Infect. Dis. 2013, 207, 1694–1702, doi:10.1093/infdis/jit086.
[16]  Chen, H.; Ndhlovu, Z.M.; Liu, D.; Porter, L.C.; Fang, J.W.; Darko, S.; Brockman, M.A.; Miura, T.; Brumme, Z.L.; Schneidewind, A.; et al. TCR clonotypes modulate the protective effect of HLA class I molecules in HIV-1 infection. Nat. Immunol. 2012, 13, 691–700, doi:10.1038/ni.2342.
[17]  Walker, B.D.; Yu, X.G. Unravelling the mechanisms of durable control of HIV-1. Nat. Rev. Immunol. 2013, 13, 487–498.
[18]  Hocqueloux, L.; Prazuck, T.; Avettand-Fenoel, V.; Lafeuillade, A.; Cardon, B.; Viard, J.P.; Rouzioux, C. Long-term immunovirologic control following antiretroviral therapy interruption in patients treated at the time of primary HIV-1 infection. AIDS 2010, 24, 1598–1601, doi:10.1097/QAD.0b013e32833b61ba.
[19]  Persaud, D.; Gay, H.; Ziemniak, C.; Chen, Y.; Piatak, M.; Chun, T.-W.; Strain, M.; Richman, D.; Luzuriaga, K. Functional HIV cure after very early ART of an infected infant. Available online: http://www.retroconference.org/2013b/Abstracts/47897.htm (accessed on 1 September 2013).
[20]  Cohen, J. Early treatment may have cured infant of HIV infection. Science 2013, 339, doi:10.1126/science.339.6124.1134.
[21]  Saez-Cirion, A.; Bacchus, C.; Hocqueloux, L.; Avettand-Fenoel, V.; Girault, I.; Lecuroux, C.; Potard, V.; Versmisse, P.; Melard, A.; Prazuck, T.; et al. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathog. 2013, 9, e1003211.
[22]  Strain, M.C.; Little, S.J.; Daar, E.S.; Havlir, D.V.; Gunthard, H.F.; Lam, R.Y.; Daly, O.A.; Nguyen, J.; Ignacio, C.C.; Spina, C.A.; et al. Effect of treatment, during primary infection, on establishment and clearance of cellular reservoirs of HIV-1. J. Infect. Dis. 2005, 191, 1410–1418, doi:10.1086/428777.
[23]  Freel, S.A.; Picking, R.A.; Ferrari, G.; Ding, H.; Ochsenbauer, C.; Kappes, J.C.; Kirchherr, J.L.; Soderberg, K.A.; Weinhold, K.J.; Cunningham, C.K.; et al. Initial HIV-1 antigen-specific CD8+ T cells in acute HIV-1 infection inhibit transmitted/founder virus replication. J. Virol. 2012, 86, 6835–6846, doi:10.1128/JVI.00437-12.
[24]  Bolton, D.L.; Minang, J.T.; Trivett, M.T.; Song, K.; Tuscher, J.J.; Li, Y.; Piatak, M., Jr.; O’Connor, D.; Lifson, J.D.; Roederer, M.; et al. Trafficking, persistence, and activation state of adoptively transferred allogeneic and autologous Simian Immunodeficiency Virus-specific CD8+ T cell clones during acute and chronic infection of rhesus macaques. J. Immunol. 2010, 184, 303–314, doi:10.4049/jimmunol.0902413.
[25]  Trkola, A.; Kuster, H.; Rusert, P.; Joos, B.; Fischer, M.; Leemann, C.; Manrique, A.; Huber, M.; Rehr, M.; Oxenius, A.; et al. Delay of HIV-1 rebound after cessation of antiretroviral therapy through passive transfer of human neutralizing antibodies. Nat. Med. 2005, 11, 615–622.
[26]  Tomaras, G.D.; Haynes, B.F. HIV-1-specific antibody responses during acute and chronic HIV-1 infection. Curr. Opin. HIV AIDS 2009, 4, 373–379, doi:10.1097/COH.0b013e32832f00c0.
[27]  Xiao, P.; Zhao, J.; Patterson, L.J.; Brocca-Cofano, E.; Venzon, D.; Kozlowski, P.A.; Hidajat, R.; Demberg, T.; Robert-Guroff, M. Multiple vaccine-elicited nonneutralizing antienvelope antibody activities contribute to protective efficacy by reducing both acute and chronic viremia following simian/human immunodeficiency virus SHIV89.6P challenge in rhesus macaques. J. Virol. 2010, 84, 7161–7173, doi:10.1128/JVI.00410-10.
[28]  Altfeld, M.; Rosenberg, E.S.; Shankarappa, R.; Mukherjee, J.S.; Hecht, F.M.; Eldridge, R.L.; Addo, M.M.; Poon, S.H.; Phillips, M.N.; Robbins, G.K.; et al. Cellular immune responses and viral diversity in individuals treated during acute and early HIV-1 infection. J. Exp. Med. 2001, 193, 169–180, doi:10.1084/jem.193.2.169.
[29]  Cellerai, C.; Harari, A.; Stauss, H.; Yerly, S.; Geretti, A.-M.; Carroll, A.; Yee, T.; Ainsworth, J.; Williams, I.; Sweeney, J.; et al. Early and prolonged antiretroviral therapy is associated with an HIV-1-specific T-cell profile comparable to that of long-term non-progressors. PLoS One 2011, 6, e18164, doi:10.1371/journal.pone.0018164.
[30]  Ananworanich, J.; Schuetz, A.; Vandergeeten, C.; Sereti, I.; de Souza, M.; Rerknimitr, R.; Dewar, R.; Marovich, M.; van Griensven, F.; Sekaly, R.; et al. Impact of multi-targeted antiretroviral treatment on gut T cell depletion and HIV reservoir seeding during acute HIV infection. PLoS One 2012, 7, e33948, doi:10.1371/journal.pone.0033948.
[31]  Jain, V.; Hartogensis, W.; Bacchetti, P.; Hunt, P.W.; Hatano, H.; Sinclair, E.; Epling, L.; Lee, T.H.; Busch, M.P.; McCune, J.M.; et al. Antiretroviral Therapy initiated within 6 months of HIV infection is associated with lower T-cell activation and smaller HIV reservoir size. J. Infect. Dis. 2013, 208, 1201–1211.
[32]  Iglesias, M.C.; Almeida, J.R.; Fastenackels, S.; van Bockel, D.J.; Hashimoto, M.; Venturi, V.; Gostick, E.; Urrutia, A.; Wooldridge, L.; Clement, M.; et al. Escape from highly effective public CD8+ T-cell clonotypes by HIV. Blood 2011, 118, 2138–2149, doi:10.1182/blood-2011-01-328781.
[33]  Hansen, S.G.; Sacha, J.B.; Hughes, C.M.; Ford, J.C.; Burwitz, B.J.; Scholz, I.; Gilbride, R.M.; Lewis, M.S.; Gilliam, A.N.; Ventura, A.B.; et al. Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms. Science 2013, 340, doi:10.1126/science.1237874.
[34]  Schmitz, J.E.; Kuroda, M.J.; Santra, S.; Sasseville, V.G.; Simon, M.A.; Lifton, M.A.; Racz, P.; Tenner-Racz, K.; Dalesandro, M.; Scallon, B.J.; et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 1999, 283, 857–860.
[35]  Yang, H.; Wu, H.; Hancock, G.; Clutton, G.; Sande, N.; Xu, X.; Yan, H.; Huang, X.; Angus, B.; Kuldanek, K.; et al. Antiviral Inhibitory Capacity of CD8+ T cells predicts the rate of CD4+ T-cell decline in HIV-1 infection. J. Infect. Dis. 2012, 206, 552–561, doi:10.1093/infdis/jis379.
[36]  Mudd, P.A.; Martins, M.A.; Ericsen, A.J.; Tully, D.C.; Power, K.A.; Bean, A.T.; Piaskowski, S.M.; Duan, L.; Seese, A.; Gladden, A.D.; et al. Vaccine-induced CD8+ T cells control AIDS virus replication. Nature 2012, 491, 129–133.
[37]  Sedlik, C.; Dadaglio, G.; Saron, M.F.; Deriaud, E.; Rojas, M.; Casal, S.I.; Leclerc, C. In vivo induction of a high-avidity, high-frequency cytotoxic T-lymphocyte response is associated with antiviral protective immunity. J. Virol. 2000, 74, 5769–5775, doi:10.1128/JVI.74.13.5769-5775.2000.
[38]  Ladell, K.; Hashimoto, M.; Iglesias, M.C.; Wilmann, P.G.; McLaren, J.E.; Gras, S.; Chikata, T.; Kuse, N.; Fastenackels, S.; Gostick, E.; et al. A Molecular basis for the control of preimmune escape variants by HIV-specific CD8+ T cells. Immunity 2013, 38, 425–436, doi:10.1016/j.immuni.2012.11.021.
[39]  Almeida, J.R.; Price, D.A.; Papagno, L.; Arkoub, Z.A.; Sauce, D.; Bornstein, E.; Asher, T.E.; Samri, A.; Schnuriger, A.; Theodorou, I.; et al. Superior control of HIV-1 replication by CD8+ T cells is reflected by their avidity, polyfunctionality, and clonal turnover. J. Exp. Med. 2007, 204, 2473–2485, doi:10.1084/jem.20070784.
[40]  Almeida, J.R.; Sauce, D.; Price, D.A.; Papagno, L.; Shin, S.Y.; Moris, A.; Larsen, M.; Pancino, G.; Douek, D.C.; Autran, B.; et al. Antigen sensitivity is a major determinant of CD8+ T-cell polyfunctionality and HIV-suppressive activity. Blood 2009, 113, 6351–6360.
[41]  Lichterfeld, M.; Yu, X.G.; Mui, S.K.; Williams, K.L.; Trocha, A.; Brockman, M.A.; Allgaier, R.L.; Waring, M.T.; Koibuchi, T.; Johnston, M.N.; et al. Selective depletion of high-avidity human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T cells after early HIV-1 infection. J. Virol. 2007, 81, 4199–4214, doi:10.1128/JVI.01388-06.
[42]  Janbazian, L.; Price, D.A.; Canderan, G.; Filali-Mouhim, A.; Asher, T.E.; Ambrozak, D.R.; Scheinberg, P.; Boulassel, M.R.; Routy, J.P.; Koup, R.A.; et al. Clonotype and repertoire changes drive the functional improvement of HIV-specific CD8 T cell populations under conditions of limited antigenic stimulation. J. Immunol. 2012, 188, 1156–1167, doi:10.4049/jimmunol.1102610.
[43]  Rosenberg, E.S.; Altfeld, M.; Poon, S.H.; Phillips, M.N.; Wilkes, B.M.; Eldridge, R.L.; Robbins, G.K.; D’Aquila, R.T.; Goulder, P.J.; Walker, B.D. Immune control of HIV-1 after early treatment of acute infection. Nature 2000, 407, 523–526.
[44]  Lifson, J.D.; Rossio, J.L.; Piatak, M., Jr.; Parks, T.; Li, L.; Kiser, R.; Coalter, V.; Fisher, B.; Flynn, B.M.; Czajak, S.; et al. Role of CD8+ lymphocytes in control of simian immunodeficiency virus infection and resistance to rechallenge after transient early antiretroviral treatment. J. Virol. 2001, 75, 10187–10199.
[45]  Von Wyl, V.; Gianella, S.; Fischer, M.; Niederoest, B.; Kuster, H.; Battegay, M.; Bernasconi, E.; Cavassini, M.; Rauch, A.; Hirschel, B.; et al. Early antiretroviral therapy during primary HIV-1 infection results in a transient reduction of the viral setpoint upon treatment interruption. PLoS One 2011, 6, e27463.
[46]  Altfeld, M.; Walker, B.D. Less is more? STI in acute and chronic HIV-1 infection. Nat. Med. 2001, 7, 881–884, doi:10.1038/90901.
[47]  Chun, T.W.; Justement, J.S.; Moir, S.; Hallahan, C.W.; Ehler, L.A.; Liu, S.; Mclaughlin, M.; Dybul, M.; Mican, J.M.; Fauci, A.S. Suppression of HIV replication in the resting CD4+ T cell reservoir by autologous CD8+ T cells: Implications for the development of therapeutic strategies. Proc. Natl. Acad. Sci. USA 2001, 98, 253–258.
[48]  Kulkosky, J.; Culnan, D.M.; Roman, J.; Dornadula, G.; Schnell, M.; Boyd, M.R.; Pomerantz, R.J. Prostratin: Activation of latent HIV-1 expression suggests a potential inductive adjuvant therapy for HAART. Blood 2001, 98, 3006–3015.
[49]  Korin, Y.D.; Brooks, D.G.; Brown, S.; Korotzer, A.; Zack, J.A. Effects of prostratin on T-cell activation and human immunodeficiency virus latency. J. Virol. 2002, 76, 8118–8123, doi:10.1128/JVI.76.16.8118-8123.2002.
[50]  Wang, F.X.; Xu, Y.; Sullivan, J.; Souder, E.; Argyris, E.G.; Acheampong, E.A.; Fisher, J.; Sierra, M.; Thomson, M.M.; Najera, R.; et al. IL-7 is a potent and proviral strain-specific inducer of latent HIV-1 cellular reservoirs of infected individuals on virally suppressive HAART. J. Clin. Invest. 2005, 115, 128–137.
[51]  Chomont, N.; El-Far, M.; Ancuta, P.; Trautmann, L.; Procopio, F.A.; Yassine-Diab, B.; Boucher, G.; Boulassel, M.R.; Ghattas, G.; Brenchley, J.M.; et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat. Med. 2009, 15, 893–900, doi:10.1038/nm.1972.
[52]  Tyagi, M.; Karn, J. CBF-1 promotes transcriptional silencing during the establishment of HIV-1 latency. EMBO J. 2007, 26, 4985–4995.
[53]  Williams, S.A.; Chen, L.F.; Kwon, H.; Ruiz-Jarabo, C.M.; Verdin, E.; Greene, W.C. NF-kappaB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. EMBO J. 2006, 25, 139–149.
[54]  Akimova, T.; Beier, U.H.; Liu, Y.; Wang, L.; Hancock, W.W. Histone/protein deacetylases and T-cell immune responses. Blood 2012, 119, 2443–2451.
[55]  Trautmann, L.; Janbazian, L.; Chomont, N.; Said, E.A.; Gimmig, S.; Bessette, B.; Boulassel, M.R.; Delwart, E.; Sepulveda, H.; Balderas, R.S.; et al. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat. Med. 2006, 12, 1198–1202.
[56]  Radziewicz, H.; Ibegbu, C.C.; Fernandez, M.L.; Workowski, K.A.; Obideen, K.; Wehbi, M.; Hanson, H.L.; Steinberg, J.P.; Masopust, D.; Wherry, E.J.; et al. Liver-infiltrating lymphocytes in chronic human hepatitis C virus infection display an exhausted phenotype with high levels of PD-1 and low levels of CD127 expression. J. Virol. 2007, 81, 2545–2553, doi:10.1128/JVI.02021-06.
[57]  Day, C.L.; Kaufmann, D.E.; Kiepiela, P.; Brown, J.A.; Moodley, E.S.; Reddy, S.; Mackey, E.W.; Miller, J.D.; Leslie, A.J.; DePierres, C.; et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 2006, 443, 350–354.
[58]  Velu, V.; Titanji, K.; Zhu, B.; Husain, S.; Pladevega, A.; Lai, L.; Vanderford, T.H.; Chennareddi, L.; Silvestri, G.; Freeman, G.J.; et al. Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature 2009, 458, 206–210, doi:10.1038/nature07662.
[59]  Nakamoto, N.; Kaplan, D.E.; Coleclough, J.; Li, Y.; Valiga, M.E.; Kaminski, M.; Shaked, A.; Olthoff, K.; Gostick, E.; Price, D.A.; et al. Functional restoration of HCV-specific CD8 T cells by PD-1 blockade is defined by PD-1 expression and compartmentalization. Gastroenterology 2008, 134, 1927–1937.
[60]  Petrovas, C.; Casazza, J.P.; Brenchley, J.M.; Price, D.A.; Gostick, E.; Adams, W.C.; Precopio, M.L.; Schacker, T.; Roederer, M.; Douek, D.C.; et al. PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection. J. Exp. Med. 2006, 203, 2281–2292, doi:10.1084/jem.20061496.
[61]  Boni, C.; Fisicaro, P.; Valdatta, C.; Amadei, B.; di Vincenzo, P.; Giuberti, T.; Laccabue, D.; Zerbini, A.; Cavalli, A.; Missale, G.; et al. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. J. Virol. 2007, 81, 4215–4225, doi:10.1128/JVI.02844-06.
[62]  Forler, D.; Kocher, T.; Rode, M.; Gentzel, M.; Izaurralde, E.; Wilm, M. An efficient protein complex purification method for functional proteomics in higher eukaryotes. Nat. Biotechnol. 2003, 21, 89–92.
[63]  Rosignoli, G.; Lim, C.H.; Bower, M.; Gotch, F.; Imami, N. Programmed death (PD)-1 molecule and its ligand PD-L1 distribution among memory CD4 and CD8 T cell subsets in human immunodeficiency virus-1-infected individuals. Clin. Exp. Immunol. 2009, 157, 90–97, doi:10.1111/j.1365-2249.2009.03960.x.
[64]  Titanji, K.; Velu, V.; Chennareddi, L.; Vijay-Kumar, M.; Gewirtz, A.T.; Freeman, G.J.; Amara, R.R. Acute depletion of activated memory B cells involves the PD-1 pathway in rapidly progressing SIV-infected macaques. J. Clin. Invest. 2010, 120, 3878–3890.
[65]  Peretz, Y.; He, Z.; Shi, Y.; Yassine-Diab, B.; Goulet, J.P.; Bordi, R.; Filali-Mouhim, A.; Loubert, J.B.; El-Far, M.; Dupuy, F.P.; et al. CD160 and PD-1 co-expression on HIV-specific CD8 T cells defines a subset with advanced dysfunction. PLoS Pathog. 2012, 8, e1002840.
[66]  Yamamoto, T.; Price, D.A.; Casazza, J.P.; Ferrari, G.; Nason, M.; Chattopadhyay, P.K.; Roederer, M.; Gostick, E.; Katsikis, P.D.; Douek, D.C.; et al. Surface expression patterns of negative regulatory molecules identify determinants of virus-specific CD8+ T-cell exhaustion in HIV infection. Blood 2011, 117, 4805–4815, doi:10.1182/blood-2010-11-317297.
[67]  Katlama, C.; Deeks, S.G.; Autran, B.; Martinez-Picado, J.; van Lunzen, J.; Rouzioux, C.; Miller, M.; Vella, S.; Schmitz, J.E.; Ahlers, J.; et al. Barriers to a cure for HIV: New ways to target and eradicate HIV-1 reservoirs. Lancet 2013, 381, 2109–2117, doi:10.1016/S0140-6736(13)60104-X.
[68]  Schluns, K.S.; Lefrancois, L. Cytokine control of memory T-cell development and survival. Nat. Rev. Immunol. 2003, 3, 269–279, doi:10.1038/nri1052.
[69]  Kovacs, J.A.; Vogel, S.; Albert, J.M.; Falloon, J.; Davey, R.T., Jr.; Walker, R.E.; Polis, M.A.; Spooner, K.; Metcalf, J.A.; Baseler, M.; et al. Controlled trial of interleukin-2 infusions in patients infected with the human immunodeficiency virus. N. Engl. J. Med. 1996, 335, 1350–1356.
[70]  Kovacs, J.A.; Baseler, M.; Dewar, R.J.; Vogel, S.; Davey, R.T., Jr.; Falloon, J.; Polis, M.A.; Walker, R.E.; Stevens, R.; Salzman, N.P.; et al. Increases in CD4 T lymphocytes with intermittent courses of interleukin-2 in patients with human immunodeficiency virus infection. A preliminary study. N. Engl. J. Med. 1995, 332, 567–575, doi:10.1056/NEJM199503023320904.
[71]  Sereti, I.; Imamichi, H.; Natarajan, V.; Imamichi, T.; Ramchandani, M.S.; Badralmaa, Y.; Berg, S.C.; Metcalf, J.A.; Hahn, B.K.; Shen, J.M.; et al. In vivo expansion of CD4CD45RO?CD25 T cells expressing foxP3 in IL-2-treated HIV-infected patients. J. Clin. Invest. 2005, 115, 1839–1847, doi:10.1172/JCI24307.
[72]  Weiss, L.; Letimier, F.A.; Carriere, M.; Maiella, S.; Donkova-Petrini, V.; Targat, B.; Benecke, A.; Rogge, L.; Levy, Y. In vivo expansion of naive and activated CD4+CD25+FOXP3+ regulatory T cell populations in interleukin-2-treated HIV patients. Proc. Natl. Acad. Sci. USA 2010, 107, 10632–10637.
[73]  Abrams, D.; Levy, Y.; Losso, M.H.; Babiker, A.; Collins, G.; Cooper, D.A.; Darbyshire, J.; Emery, S.; Fox, L.; Gordin, F.; et al. Interleukin-2 therapy in patients with HIV infection. N. Engl. J. Med. 2009, 361, 1548–1559, doi:10.1056/NEJMoa0903175.
[74]  Wu, Z.; Xue, H.H.; Bernard, J.; Zeng, R.; Issakov, D.; Bollenbacher-Reilley, J.; Belyakov, I.M.; Oh, S.; Berzofsky, J.A.; Leonard, W.J. The IL-15 receptor {alpha} chain cytoplasmic domain is critical for normal IL-15Ralpha function but is not required for trans-presentation. Blood 2008, 112, 4411–4419, doi:10.1182/blood-2007-03-080697.
[75]  Ring, A.M.; Lin, J.-X.; Feng, D.; Mitra, S.; Rickert, M.; Bowman, G.R.; Pande, V.S.; Li, P.; Moraga, I.; Spolski, R.; et al. Mechanistic and structural insight into the functional dichotomy between IL-2 and IL-15. Nat. Immunol. 2012, 13, 1187–1195.
[76]  Marks-Konczalik, J.; Dubois, S.; Losi, J.M.; Sabzevari, H.; Yamada, N.; Feigenbaum, L.; Waldmann, T.A.; Tagaya, Y. IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc. Natl. Acad. Sci. USA 2000, 97, 11445–11450, doi:10.1073/pnas.200363097.
[77]  Waldmann, T.A.; Tagaya, Y. The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens. Annu. Rev. Immunol. 1999, 17, 19–49, doi:10.1146/annurev.immunol.17.1.19.
[78]  Mueller, Y.M.; Petrovas, C.; Bojczuk, P.M.; Dimitriou, I.D.; Beer, B.; Silvera, P.; Villinger, F.; Cairns, J.S.; Gracely, E.J.; Lewis, M.G.; et al. Interleukin-15 increases effector memory CD8+ T cells and NK cells in simian immunodeficiency virus-infected macaques. J. Virol. 2005, 79, 4877–4885, doi:10.1128/JVI.79.8.4877-4885.2005.
[79]  Mueller, Y.M.; Bojczuk, P.M.; Halstead, E.S.; Kim, A.H.; Witek, J.; Altman, J.D.; Katsikis, P.D. IL-15 enhances survival and function of HIV-specific CD8+ T cells. Blood 2003, 101, 1024–1029.
[80]  Rodriguez, A.R.; Arulanandam, B.P.; Hodara, V.L.; McClure, H.M.; Cobb, E.K.; Salas, M.T.; White, R.; Murthy, K.K. Influence of interleukin-15 on CD8+ natural killer cells in human immunodeficiency virus type 1-infected chimpanzees. J. Gen. Virol. 2007, 88, 641–651, doi:10.1099/vir.0.82154-0.
[81]  Klebanoff, C.A.; Finkelstein, S.E.; Surman, D.R.; Lichtman, M.K.; Gattinoni, L.; Theoret, M.R.; Grewal, N.; Spiess, P.J.; Antony, P.A.; Palmer, D.C.; et al. IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc. Natl. Acad. Sci. USA 2004, 101, 1969–1974.
[82]  Zhang, M.; Ju, W.; Yao, Z.; Yu, P.; Wei, B.-R.; Simpson, R.M.; Waitz, R.; Fassò, M.; Allison, J.P.; Waldmann, T.A. Augmented IL-15Rα expression by CD40 activation is critical in synergistic CD8 T cell-mediated antitumor activity of anti-CD40 antibody with IL-15 in TRAMP-C2 tumors in mice. J. Immunol. 2012, 188, 6156–6164, doi:10.4049/jimmunol.1102604.
[83]  Vincent, M.; Bessard, A.; Cochonneau, D.; Teppaz, G.; Solé, V.; Maillasson, M.; Birklé, S.; Garrigue-Antar, L.; Quéméner, A.; Jacques, Y. Tumor targeting of the IL-15 superagonist RLI by an anti-GD2 antibody strongly enhances its antitumor potency. Int. J. Cancer 2013, 133, 757–765.
[84]  Yu, P.; Steel, J.C.; Zhang, M.; Morris, J.C.; Waldmann, T.A. Simultaneous Blockade of multiple immune system inhibitory checkpoints enhances antitumor activity mediated by interleukin-15 in a murine metastatic colon carcinoma model. Clin. Cancer Res. 2010, 16, 6019–6028, doi:10.1158/1078-0432.CCR-10-1966.
[85]  Yang, S.; Ji, Y.; Gattinoni, L.; Zhang, L.; Yu, Z.; Restifo, N.P.; Rosenberg, S.A.; Morgan, R.A. Modulating the differentiation status of ex vivo-cultured anti-tumor T cells using cytokine cocktails. Cancer Immunol. Immunother. 2013, 62, 727–736, doi:10.1007/s00262-012-1378-2.
[86]  Sneller, M.C.; Kopp, W.C.; Engelke, K.J.; Yovandich, J.L.; Creekmore, S.P.; Waldmann, T.A.; Lane, H.C. IL-15 administered by continuous infusion to rhesus macaques induces massive expansion of CD8+ T effector memory population in peripheral blood. Blood 2011, 118, 6845–6848, doi:10.1182/blood-2011-09-377804.
[87]  Waldmann, T.A.; Lugli, E.; Roederer, M.; Perera, L.P.; Smedley, J.V.; Macallister, R.P.; Goldman, C.K.; Bryant, B.R.; Decker, J.M.; Fleisher, T.A.; et al. Safety (toxicity), pharmacokinetics, immunogenicity, and impact on elements of the normal immune system of recombinant human IL-15 in rhesus macaques. Blood 2011, 117, 4787–4795, doi:10.1182/blood-2010-10-311456.
[88]  Lugli, E.; Mueller, Y.M.; Lewis, M.G.; Villinger, F.; Katsikis, P.D.; Roederer, M. IL-15 delays suppression and fails to promote immune reconstitution in virally suppressed chronically SIV-infected macaques. Blood 2011, 118, 2520–2529.
[89]  Nugeyre, M.T.; Monceaux, V.; Beq, S.; Cumont, M.C.; Ho Tsong Fang, R.; Chene, L.; Morre, M.; Barre-Sinoussi, F.; Hurtrel, B.; Israel, N. IL-7 stimulates T cell renewal without increasing viral replication in simian immunodeficiency virus-infected macaques. J. Immunol. 2003, 171, 4447–4453.
[90]  Beq, S.; Nugeyre, M.T.; Ho Tsong Fang, R.; Gautier, D.; Legrand, R.; Schmitt, N.; Estaquier, J.; Barre-Sinoussi, F.; Hurtrel, B.; Cheynier, R.; et al. IL-7 induces immunological improvement in SIV-infected rhesus macaques under antiviral therapy. J. Immunol. 2006, 176, 914–922.
[91]  Sereti, I.; Dunham, R.M.; Spritzler, J.; Aga, E.; Proschan, M.A.; Medvik, K.; Battaglia, C.A.; Landay, A.L.; Pahwa, S.; Fischl, M.A.; et al. IL-7 administration drives T cell-cycle entry and expansion in HIV-1 infection. Blood 2009, 113, 6304–6314, doi:10.1182/blood-2008-10-186601.
[92]  Parmigiani, A.; Pallin, M.F.; Schmidtmayerova, H.; Lichtenheld, M.G.; Pahwa, S. Interleukin-21 and cellular activation concurrently induce potent cytotoxic function and promote antiviral activity in human CD8 T cells. Hum. Immunol. 2011, 72, 115–123, doi:10.1016/j.humimm.2010.10.015.
[93]  Chevalier, M.F.; Julg, B.; Pyo, A.; Flanders, M.; Ranasinghe, S.; Soghoian, D.Z.; Kwon, D.S.; Rychert, J.; Lian, J.; Muller, M.I.; et al. HIV-1-specific interleukin-21+ CD4+ T cell responses contribute to durable viral control through the modulation of HIV-specific CD8+ T cell function. J. Virol. 2011, 85, 733–741, doi:10.1128/JVI.02030-10.
[94]  Pallikkuth, S.; Rogers, K.; Villinger, F.; Dosterii, M.; Vaccari, M.; Franchini, G.; Pahwa, R.; Pahwa, S. Interleukin-21 administration to rhesus macaques chronically infected with simian immunodeficiency virus increases cytotoxic effector molecules in T cells and NK cells and enhances B cell function without increasing immune activation or viral replication. Vaccine 2011, 29, 9229–9238, doi:10.1016/j.vaccine.2011.09.118.
[95]  Scripture-Adams, D.D.; Brooks, D.G.; Korin, Y.D.; Zack, J.A. Interleukin-7 induces expression of latent human immunodeficiency virus type I with minimal effects on T-cell phenotype. J. Virol. 2002, 76, 13077–13082, doi:10.1128/JVI.76.24.13077-13082.2002.
[96]  Vandergeeten, C.; DaFonseca, S.; Fromentin, R.; Sekaly, R.; Chomont, N. Differential impact of IL-7 and IL-15 on HIV reservoir persistence. In Final Program and Abstracts of the 5th International Workshop on HIV Pesistence during Therapy, St Maarten, West Indies, 6–9 December 2011.
[97]  Vandergeeten, C.; Fromentin, R.; Dafonseca, S.; Lawani, M.B.; Sereti, I.; Lederman, M.M.; Ramgopal, M.; Routy, J.P.; Sekaly, R.P.; Chomont, N. Interleukin-7 promotes HIV persistence during antiretroviral therapy. Blood 2013, 121, 4321–4329, doi:10.1182/blood-2012-11-465625.
[98]  Appay, V.; van Lier, R.A.; Sallusto, F.; Roederer, M. Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytometry A 2008, 73, 975–983.
[99]  Appay, V.; Douek, D.C.; Price, D.A. CD8+ T cell efficacy in vaccination and disease. Nat. Med. 2008, 14, 623–628, doi:10.1038/nm.f.1774.
[100]  Betts, M.R.; Harari, A. Phenotype and function of protective T cell immune responses in HIV. Curr. Opin. HIV/AIDS 2008, 3, 349–355.
[101]  Saez-Cirion, A.; Shin, S.Y.; Versmisse, P.; Barre-Sinoussi, F.; Pancino, G. Ex vivo T cell-based HIV suppression assay to evaluate HIV-specific CD8+ T-cell responses. Nat. Protoc. 2010, 5, 1033–1041, doi:10.1038/nprot.2010.73.
[102]  Spentzou, A.; Bergin, P.; Gill, D.; Cheeseman, H.; Ashraf, A.; Kaltsidis, H.; Cashin Cox, M.; Anjarwalla, I.; Steel, A.; Higgs, C.; et al. Viral Inhibition Assay: A CD8 T cell neutralization assay for use in clinical trials of HIV-1 vaccine candidates. J. Infect. Dis. 2010, 201, 720–729, doi:10.1086/650492.
[103]  Mbitikon-Kobo, F.M.; Bonneville, M.; Sekaly, R.P.; Trautmann, L. Ex vivo measurement of the cytotoxic capacity of human primary antigen-specific CD8 T cells. J. Immunol. Methods 2012, 375, 252–257.
[104]  Trautmann, L.; Mbitikon-Kobo, F.M.; Goulet, J.P.; Peretz, Y.; Shi, Y.; van Grevenynghe, J.; Procopio, F.A.; Boulassel, M.R.; Routy, J.P.; Chomont, N.; et al. Profound metabolic, functional, and cytolytic differences characterize HIV-specific CD8 T cells in primary and chronic HIV infection. Blood 2012, 120, 3466–3477, doi:10.1182/blood-2012-04-422550.
[105]  Monini, P.; Cafaro, A.; Srivastava, I.K.; Moretti, S.; Sharma, V.A.; Andreini, C.; Chiozzini, C.; Ferrantelli, F.; Cossut, M.R.; Tripiciano, A.; et al. HIV-1 tat promotes integrin-mediated HIV transmission to dendritic cells by binding Env spikes and competes neutralization by anti-HIV antibodies. PLoS One 2012, 7, e48781, doi:10.1371/journal.pone.0048781.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133