The trichothecene mycotoxin deoxynivalenol (DON) is a well known and common contaminant in food and feed. Acetylated derivatives and other biosynthetic precursors can occur together with the main toxin. A key biosynthetic step towards DON involves an oxidation of the 8-OH group of 7,8-dihydroxycalonectrin. Since analytical standards for the intermediates are not available and these intermediates are therefore rarely studied, we aimed for a synthetic method to invert this reaction, making a series of calonectrin-derived precursors accessible. We did this by developing an efficient protocol for stereoselective Luche reduction at C8. This method was used to access 3,7,8,15-tetrahydroxyscirpene, 3-deacetyl-7,8-dihydroxycalonectrin, 15-deacetyl-7,8-dihydroxycalonectrin and 7,8-dihydroxycalonectrin, which were characterized using several NMR techniques. Beside the development of a method which could basically be used for all type B trichothecenes, we opened a synthetic route towards different acetylated calonectrins.
Cundliffe, E.; Cannon, M.; Davies, J. Mechanism of inhibition of eukaryotic protein synthesis by trichothecene fungal toxins. Proc. Natl. Acad. Sci. USA 1974, 71, 30–34, doi:10.1073/pnas.71.1.30.
[3]
Pestka, J. Deoxynivalenol: Mechanisms of action, human exposure, and toxicological relevance. Arch. Toxicol. 2010, 84, 663–679.
[4]
Arunachalam, C.; Doohan, F.M. Trichothecene toxicity in eukaryotes: Cellular and molecular mechanisms in plants and animals. Toxicol. Lett. 2013, 217, 149–158, doi:10.1016/j.toxlet.2012.12.003.
[5]
Rotter, B.A. Invited review: Toxicology of deoxynivalenol (vomitoxin). J. Toxicol. Environ. Health 1996, 48, 1–34, doi:10.1080/009841096161447.
Maresca, M. From the gut to the brain: Journey and pathophysiological effects of the food-associated trichothecene mycotoxin deoxynivalenol. Toxins 2013, 5, 784–820, doi:10.3390/toxins5040784.
[8]
Ueno, Y. The toxicology of mycotoxins. Crit. Rev. Toxicol. 1985, 14, 99–132, doi:10.3109/10408448509089851.
[9]
Grovey, J.F. The trichothecenes and their biosynthesis. In Progress in the Chemistry of Organic Natural Products; Herz, W., Falk, H., Kirby, G.W., Eds.; Springer Vienna: Vienna, Austria, 2007; Volume 88, pp. 63–130.
[10]
McCormick, S.P.; Stanley, A.M.; Stover, N.A.; Alexander, N.J. Trichothecenes: From simple to complex mycotoxins. Toxins 2011, 3, 802–814, doi:10.3390/toxins3070802.
[11]
Fruhmann, P.; Mikula, H.; Wiesenberger, G.; Varga, E.; Lumpi, D.; St?ger, B.; H?ubl, G.; Lemmens, M.; Berthiller, F.; Krska, R.; et al. Isolation and structure elucidation of pentahydroxyscirpene, a trichothecene fusarium mycotoxin. J. Nat. Prod. 2014, doi:10.1021/np4008365.
[12]
Greenhalgh, R.; Levandier, D.; Adams, W.; Miller, J.D.; Blackwell, B.A.; McAlees, A.J.; Taylor, A. Production and characterization of deoxynivalenol and other secondary metabolites of fusarium culmorum (cmi 14764, hlx 1503). J. Agric. Food Chem. 1986, 34, 98–102, doi:10.1021/jf00067a027.
[13]
Greenhalgh, R.; Meier, R.M.; Blackwell, B.A.; Miller, J.D.; Taylor, A.; ApSimon, J.W. Minor metabolites of fusarium roseum (atcc 28114). J. Agric. Food Chem. 1984, 32, 1261–1264, doi:10.1021/jf00126a013.
[14]
Hanson, A. The structure of a trichothecene from fusarium roseum. Acta Crystallogr. Sect. C 1986, 42, 503–505, doi:10.1107/S010827018609563X.
[15]
Hesketh, A.R.; Gledhill, L.; Marsh, D.C.; Bycroft, B.W.; Dewick, P.M.; Gilbert, J. Biosynthesis of trichothecene mycotoxins: Identification of isotrichodiol as a post-trichodiene intermediate. Phytochemistry 1991, 30, 2237–2243, doi:10.1016/0031-9422(91)83621-Q.
[16]
Hesketh, A.R.; gledhill, L.; Bycroft, B.W.; Dewick, P.M.; Gilbert, J. Potential inhibitors of trichothecene biosynthesis in fusarium culmorum: Epoxidation of a trichodiene derivative. Phytochemistry 1992, 32, 93–104, doi:10.1016/0031-9422(92)80113-S.
[17]
Kononenko, G.P.; Soboleva, N.A.; Leonov, A.N. 3,7,8,15-tetrahydroxy-12,13-epoxytrichothec-9-en in a culture of fusarium graminearum. Chem. Nat. Compd. 1990, 26, 219–220, doi:10.1007/BF00607551.
[18]
Gemal, A.L.; Luche, J.L. Lanthanoids in organic synthesis. 6. Reduction of Alpha.-enones by sodium borohydride in the presence of lanthanoid chlorides: Synthetic and mechanistic aspects. J. Am. Chem. Soc. 1981, 103, 5454–5459, doi:10.1021/ja00408a029.
[19]
Luche, J.L. Lanthanides in organic chemistry. 1. Selective 1,2 reductions of conjugated ketones. J. Am. Chem. Soc. 1978, 100, 2226–2227.
[20]
??astná, E.; ?erny, I.; Pouzar, V.; Chodounská, H. Stereoselectivity of sodium borohydride reduction of saturated steroidal ketones utilizing conditions of luche reduction. Steroids 2010, 75, 721–725, doi:10.1016/j.steroids.2010.04.010.
[21]
Cram, D.J.; Elhafez, F.A.A. Studies in stereochemistry. X. The rule of “steric control of asymmetric induction” in the syntheses of acyclic systems. J. Am. Chem. Soc. 1952, 74, 5828–5835, doi:10.1021/ja01143a007.
[22]
Savard, M.E.; Blackwell, B.A.; Greenhalgh, R. An 1 H nuclear magnetic resonance study of derivatives of 3-hydroxy-12,13-epoxytrichothec-9-enes. Can. J. Chem. 1987, 65, 2254–2262, doi:10.1139/v87-376.
[23]
Grove, J.F.; McAlees, A.J.; Taylor, A. Preparation of 10-g quantities of 15-O-acetyl-4-deoxynivalenol. J. Org. Chem. 1988, 53, 3860–3862, doi:10.1021/jo00251a040.
[24]
Pirrung, M.C. Appendix 3: Recipes for TLC stains. In The Synthetic Organic Chemist’s Companion; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 171–172.
[25]
Fulmer, G.R.; Miller, A.J.M.; Sherden, N.H.; Gottlieb, H.E.; Nudelman, A.; Stoltz, B.M.; Bercaw, J.E.; Goldberg, K.I. NMR chemical shifts of trace impurities: Common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics 2010, 29, 2176–2179, doi:10.1021/om100106e.
[26]
Blackwell, B.A.; Greenhalgh, R.; Bain, A.D. Carbon-13 and proton nuclear magnetic resonance spectral assignments of deoxynivalenol and other mycotoxins from fusarium graminearum. J. Agric. Food Chem. 1984, 32, 1078–1083, doi:10.1021/jf00125a037.
[27]
Mu?oz, L.; Castro, J.L.; Cardelle, M.; Castedo, L.; Riguera, R. Acetylated mycotoxins from fusarium graminearum. Phytochemistry 1989, 28, 83–85.
[28]
Cravero, R.M.; González-Sierra, M.; Labadie, G.R. Convergent approaches to saudin intermediates. Helv. Chim. Acta 2003, 86, 2741–2753, doi:10.1002/hlca.200390223.
[29]
Rafiński, Z.; ?cianowski, J. Synthesis and reactions of enantiomerically pure dialkyl diselenides from the p-menthane group. Tetrahedron 2008, 19, 1237–1244.