During toxic Microcystis aeruginosa blooms, large amounts of cells can enter sediment through natural settlement, and coagulation treatment used to control water blooms can enhance the accumulation of cells. However, the current understanding of the fates of these cells and associated microcystins (MCs), as well as the effect of coagulation treatment on these factors, is limited. The results of the present study show that Microcystis aeruginosa cells in sediment were steadily decomposed under experimental conditions, and that they completely disappeared within 28 days. The major MCs released from settled cells were immediately degraded in sediment, and microbial degradation may be the main mechanism involved in this process. Coagulation treatment with PAC (polyaluminium chloride) + sepiolite can efficiently remove Microcystis aeruginosa cells from the water column and prevent their re-invasion. Furthermore, coagulation treatment with PAC + sepiolite had no significant effect on the release and decomposition of MCs and, thus, will not enhance the MCs pollution. However, coagulation treatment can accelerate the nutrient cycle by enhancing the settlement of cells. More attention should be paid to the effect on nutrient cycle when coagulation treatment is used for restoration of aquatic ecosystems.
References
[1]
Dionysiou, D. Overview: Harmful algal blooms and natural toxins in fresh and marine waters—Exposure, occurrence, detection, toxicity, control, management and policy. Toxicon 2010, 55, 907–908, doi:10.1016/j.toxicon.2009.12.024.
[2]
Li, H.; Xing, P.; Chen, M.; Bian, Y.; Wu, Q.L. Short-term bacterial community composition dynamics in response to accumulation and breakdown of Microcystis blooms. Water Res. 2011, 45, 1702–1710, doi:10.1016/j.watres.2010.11.011.
[3]
Graham, J.L.; Loftin, K.A.; Meyer, M.T.; Ziegler, A.C. Cyanotoxin mixtures and taste-and-odor compounds in cyanobacterial blooms from the Midwestern United States. Environ. Sci. Technol. 2010, 44, 7361–7368, doi:10.1021/es1008938.
[4]
Dorr, F.A.; Pinto, E.; Soares, R.M.; Feliciano de Oliveira e Azevedo, S.M. Microcystins in South American aquatic ecosystems: Occurrence, toxicity and toxicological assays. Toxicon 2010, 56, 1247–1256, doi:10.1016/j.toxicon.2010.03.018.
[5]
World Health Organization (WHO). Guidelines for Drinking-Water Quality. In Addendum to Volume 2: Health Criteria and Other Supporting Information; WHO: Geneva, Switzerland, 1998.
[6]
Ihle, T.; J?hnichen, S.; Benndorf, J. Wax and wane of microcystis (Cyanophyceae) and microcystins in lake sediments: A case study in Quitzdorf Reservoir (Germany). J. Phycol. 2005, 41, 479–488, doi:10.1111/j.1529-8817.2005.00071.x.
[7]
Welker, M.; ?ejnohová, L.; Némethová, D.; von D?hren, H.; Jarkovsky, J.; Mar?álek, B. Seasonal shifts in chemotype composition of Microcystis sp. Communities in the pelagial and the sediment of a shallow reservoir. Limnol. Oceanogr. 2007, 52, 609–619, doi:10.4319/lo.2007.52.2.0609.
[8]
Kankaanp??, H.T.; Sj?vall, O.; Huttunen, M.; Olin, M.; Karlsson, K.; Hyv?rinen, K.; Sneitz, L.; H?rk?nen, J.; Sipi?, V.O.; Meriluoto, J.A.O. Production and sedimentation of peptide toxins nodularin-R and microcystin-LR in the northern Baltic Sea. Environ. Pollut. 2009, 157, 1301–1309, doi:10.1016/j.envpol.2008.11.044.
[9]
Cirés, S.; W?rmer, L.; Carrasco, D.; Quesada, A. Sedimentation patterns of toxin-producing Microcystis morphospecies in freshwater reservoirs. Toxins 2013, 5, 939–957, doi:10.3390/toxins5050939.
[10]
W?rmer, L.; Cirés, S.; Quesada, A. Importance of natural sedimentation in the fate of microcystins. Chemosphere 2011, 82, 1141–1146, doi:10.1016/j.chemosphere.2010.11.024.
[11]
Brunberg, A.-K.; Blomqvist, P. Benthic overwintering of Microcystis colonies under different environmental conditions. J. Plankton Res. 2002, 24, 1247–1252, doi:10.1093/plankt/24.11.1247.
[12]
Tsujimura, S.; Tsukada, H.; Nakahara, H.; Nakajima, T.; Nishino, M. Seasonal variations of Microcystis populations in sediments of Lake Biwa, Japan. Hydrobiologia 2000, 434, 183–192, doi:10.1023/A:1004077225916.
[13]
Oberholster, P.J.; Botha, A.M.; Cloete, T.E. Use of molecular markers as indicators for winter zooplankton grazing on toxic benthic cyanobacteria colonies in an urban Colorado lake. Harmful Algae 2006, 5, 705–716, doi:10.1016/j.hal.2006.03.001.
[14]
Mohamed, Z.A.; Al-Shehri, A.M. Grazing on Microcystis aeruginosa and degradation of microcystins by the heterotrophic flagellate Diphylleia rotans. Ecotox. Environ. Safe. 2013, 96, 48–52, doi:10.1016/j.ecoenv.2013.06.015.
[15]
Sch?ne, K.; J?hnichen, S.; Ihle, T.; Ludwig, F.; Benndorf, J. Arriving in better shape: Benthic Microcystis as inoculum for pelagic growth. Harmful Algae 2010, 9, 494–503, doi:10.1016/j.hal.2010.03.005.
[16]
Kim, S.G.; Joung, S.H.; Ahn, C.Y.; Ko, S.R.; Boo, S.M.; Oh, H.M. Annual variation of Microcystis genotypes and their potential toxicity in water and sediment from a eutrophic reservoir. FEMS Microbiol. Ecol. 2010, 74, 93–102, doi:10.1111/j.1574-6941.2010.00947.x.
[17]
Johnston, B.R.; Jacoby, J.M. Cyanobacterial toxicity and migration in a mesotrophic lake in western Washington, USA. Hydrobiologia 2003, 495, 79–91, doi:10.1023/A:1025496922050.
[18]
Rinta-Kanto, J.M.; Saxton, M.A.; DeBruyn, J.M.; Smith, J.L.; Marvin, C.H.; Krieger, K.A.; Sayler, G.S.; Boyer, G.L.; Wilhelm, S.W. The diversity and distribution of toxigenic Microcystis spp. in present day and archived pelagic and sediment samples from Lake Erie. Harmful Algae 2009, 8, 385–394, doi:10.1016/j.hal.2008.08.026.
[19]
Rohrlack, T.; Hyenstrand, P. Fate of intracellular microcystins in the cyanobacterium Microcystis aeruginosa (Chroococcales, Cyanophyceae). Phycologia 2007, 46, 277–283, doi:10.2216/06-14.1.
[20]
Tsuji, K.; Masui, H.; Uemura, H.; Mori, Y.; Harada, K.-I. Analysis of microcystins in sediments using MMPB method. Toxicon 2001, 39, 687–692, doi:10.1016/S0041-0101(00)00196-3.
[21]
Chen, W.; Song, L.; Peng, L.; Wan, N.; Zhang, X.; Gan, N. Reduction in microcystin concentrations in large and shallow lakes: Water and sediment-interface contributions. Water Res. 2008, 42, 763–773, doi:10.1016/j.watres.2007.08.007.
[22]
Mohamed, Z.A.; El-Sharouny, H.M.; Ali, W.S. Microcystin concentrations in the Nile river sediments and removal of microcystin-LR by sediments during batch experiments. Arch. Environ. Contam. Toxicol. 2007, 52, 489–495, doi:10.1007/s00244-006-0140-1.
[23]
Hitzfeld, B.C.; Hoger, S.J.; Dietrich, D.R. Cyanobacterial toxins: Removal during drinking water treatment, and human risk assessment. Environ. Health Perspect. 2000, 108, 113–122.
[24]
Anderson, D.M. Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean. Coastal Manag. 2009, 52, 342–347, doi:10.1016/j.ocecoaman.2009.04.006.
[25]
Zamyadi, A.; Dorner, S.; Sauve, S.; Ellis, D.; Bolduc, A.; Bastien, C.; Prevost, M. Species-dependence of cyanobacteria removal efficiency by different drinking water treatment processes. Water Res. 2013, 47, 2689–2700, doi:10.1016/j.watres.2013.02.040.
[26]
Sun, F.; Pei, H.-Y.; Hu, W.-R.; Li, X.-Q.; Ma, C.-X.; Pei, R.-T. The cell damage of Microcystis aeruginosa in PACl coagulation and floc storage processes. Sep. Purif. Technol. 2013, 115, 123–128, doi:10.1016/j.seppur.2013.05.004.
[27]
Hall, T.; Hart, J.; Croll, B.; Gregory, R. Laboratory-scale investigations of algal toxin removal by water treatment. J. Chart. Inst. Water. Environ. Manag. 2000, 14, 143–149, doi:10.1111/j.1747-6593.2000.tb00241.x.
[28]
Drikas, M.; Chow, C.W.K.; House, J.; Burch, M.D. Using coagulation, flocculation, and settling to remove toxic cyanobacteria. J. Am. Water Work Assoc. 2001, 93, 100–111.
[29]
Jurczak, T.; Tarczynska, M.; Izydorczyk, K.; Mankiewicz, J.; Zalewski, M.; Meriluoto, J. Elimination of microcystins by water treatment processes—Examples from Rulejow Reservoir, Poland. Water Res. 2005, 39, 2394–2406, doi:10.1016/j.watres.2005.04.031.
[30]
Henderson, R.; Parsons, S.A.; Jefferson, B. The impact of algal properties and pre-oxidation on solid-liquid separation of algae. Water Res. 2008, 42, 1827–1845, doi:10.1016/j.watres.2007.11.039.
[31]
Pan, G.; Yang, B.; Wang, D.; Chen, H.; Tian, B.-H.; Zhang, M.-L.; Yuan, X.-Z.; Chen, J. In-lake algal bloom removal and submerged vegetation restoration using modified local soils. Ecol. Eng. 2011, 37, 302–308, doi:10.1016/j.ecoleng.2010.11.019.
[32]
Lürling, M.; Oosterhout, F.V. Controlling eutrophication by combined bloom precipitation and sediment phosphorus inactivation. Water Res. 2013, 47, 6527–6537, doi:10.1016/j.watres.2013.08.019.
[33]
Pilgrim, K.M.; Brezonik, P.L. Evaluation of the potential adverse effects of lake inflow treatment with alum. Lake Reserv. Manag. 2005, 21, 77–87.
[34]
MacDiarmid, C.W.; Gardner, R.C. Overexpression of the Saccharomyces cerevisiaemagnesium transport system confers resistance to aluminum ion. J. Biol. Chem. 1998, 273, 1727–1732, doi:10.1074/jbc.273.3.1727.
[35]
St?hl-Delbanco, A.; Hansson, L.-A. Effects of bioturbation on recruitment of algal cells from the “seed bank” of lake sediments. Limnol. Oceanogr. 2002, 47, 1836–1843, doi:10.4319/lo.2002.47.6.1836.
[36]
St?hl-Delbanco, A.; Hansson, L.-A.; Gyllstr?m, M. Recruitment of resting stages may induce blooms of Microcystis at low n:P ratios. J. Plankton Res. 2003, 25, 1099–1106, doi:10.1093/plankt/25.9.1099.
[37]
Yamamoto, Y. Contribution of bioturbation by the red swamp crayfish Procambarus clarkii to the recruitment of bloom-forming cyanobacteria from sediment. J. Limnol. 2010, 69, 102–111, doi:10.4081/jlimnol.2010.102.
[38]
Han, J.; Jeon, B.-S.; Futatsugi, N.; Park, H.-D. The effect of alum coagulation for in-lake treatment of toxic Microcystis and other cyanobacteria related organisms in microcosm experiments. Ecotox. Environ. Safe. 2013, 96, 17–23, doi:10.1016/j.ecoenv.2013.06.008.
[39]
Edwards, C.; Graham, D.; Fowler, N.; Lawton, L.A. Biodegradation of microcystins and nodularin in freshwaters. Chemosphere 2008, 73, 1315–1321, doi:10.1016/j.chemosphere.2008.07.015.
[40]
Catherine, Q.; Susanna, W.; Isidora, E.-S.; Mark, H.; Aurélie, V.; Jean-Fran?ois, H. A review of current knowledge on toxic benthic freshwater cyanobacteria—Ecology, toxin production and risk management. Water Res. 2013, 47, 5464–5479, doi:10.1016/j.watres.2013.06.042.
[41]
Ou, D.Y.; Song, L.R.; Gan, N.Q.; Chen, W. Effects of microcystins on and toxin degradation by Poterioochromonas sp. Environ. Toxicol. 2005, 20, 373–380, doi:10.1002/tox.20114.
[42]
Kim, B.R.; Nakan, S.; Kim, B.H.; Han, M.S. Grazing and growth of the heterotrophic flagellate Diphylleia rotans on the cyanobacterium Microcystis aeruginosa. Aquat. Microb. Ecol. 2006, 45, 163–170, doi:10.3354/ame045163.
[43]
Giaramida, L.; Manage, P.M.; Edwards, C.; Singh, B.K.; Lawton, L.A. Bacterial communities’ response to microcystins exposure and nutrient availability: Linking degradation capacity to community structure. Int. Biodeterior. Biodegrad. 2013, 84, 111–117, doi:10.1016/j.ibiod.2012.05.036.
[44]
Chen, X.; Yang, X.; Yang, L.; Xiao, B.; Wu, X.; Wang, J.; Wan, H. An effective pathway for the removal of microcystin LR via anoxic biodegradation in lake sediments. Water Res. 2010, 44, 1884–1892, doi:10.1016/j.watres.2009.11.025.
[45]
Zou, H.; Pan, G.; Chen, H.; Yuan, X. Removal of cyanobacterial blooms in Taihu lake using local soils II. Effective removal of Microcystis aeruginosa using local soils and sediments modified by chitosan. Environ. Pollut. 2006, 141, 201–205, doi:10.1016/j.envpol.2005.08.042.
[46]
Mirón, A.S.; Garc??a, M.C.C.; Gómez, A.C.; Camacho, F.G.A.; Grima, E.M.; Chisti, Y. Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem. Eng. J. 2003, 16, 287–297, doi:10.1016/S1369-703X(03)00072-X.