全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Toxins  2014 

Cytotoxic and Cytolytic Cnidarian Venoms. A Review on Health Implications and Possible Therapeutic Applications

DOI: 10.3390/toxins6010108

Keywords: Cnidaria, venom, cytotoxicity, cell cultures

Full-Text   Cite this paper   Add to My Lib

Abstract:

The toxicity of Cnidaria is a subject of concern for its influence on human activities and public health. During the last decades, the mechanisms of cell injury caused by cnidarian venoms have been studied utilizing extracts from several Cnidaria that have been tested in order to evaluate some fundamental parameters, such as the activity on cell survival, functioning and metabolism, and to improve the knowledge about the mechanisms of action of these compounds. In agreement with the modern tendency aimed to avoid the utilization of living animals in the experiments and to substitute them with in vitro systems, established cell lines or primary cultures have been employed to test cnidarian extracts or derivatives. Several cnidarian venoms have been found to have cytotoxic properties and have been also shown to cause hemolytic effects. Some studied substances have been shown to affect tumour cells and microorganisms, so making cnidarian extracts particularly interesting for their possible therapeutic employment. The review aims to emphasize the up-to-date knowledge about this subject taking in consideration the importance of such venoms in human pathology, the health implications and the possible therapeutic application of these natural compounds.

References

[1]  Ayed, Y.; Bousabbeh, M.; Mabrouk, H.B.; Morjen, M.; Marrakchi, N.; Bacha, H. Impairment of the cell-to-matrix adhesion and cytotoxicity induced by the Mediterranean jellyfish Pelagia noctiluca venom and its fractions in cultured glioblastoma cells. Lipids Health Dis. 2012, 11, 84.
[2]  Morabito, R.; Condello, S.; Currò, M.; Marino, A.; Ientile, R.; La Spada, G. Oxidative stress induced by crude venom from the jellyfish Pelagia noctiluca in neuronal-like differentiated SH-SY5Y cells. Toxicol. In Vitro 2012, 26, 694–699.
[3]  Leone, A.; Lecci, R.M.; Durante, M.; Piraino, S. Extract from the zooxanthellate jellyfish Cotylorhiza tuberculata modulates gap junction intercellular communication in human cell cultures. Mar. Drugs 2013, 11, 1728–1762, doi:10.3390/md11051728.
[4]  Lassen, S.; Helmholz, H.; Ruhnau, C.; Prange, A. A novel proteinaceous cytotoxin from the northern Scyphozoa Cyanea capillata (L.) with structural homology to cubozoan haemolysins. Toxicon 2011, 57, 721–729.
[5]  Marino, A.; Morabito, R.; La Spada, G. Physiology of Nematocytes. In Proceedings of the 83° Congresso Nazionale SIBS, Palermo, Italy, 24–25 October 2013. Abstract Number 36.
[6]  Mariscal, R.N. Nematocysts. In Coelenterate Biology; Muscatine, L., Lenhoff, H.M., Eds.; Academic Press: New York, NY, USA, 1974; pp. 129–178.
[7]  Weinheimer, A.J.; Spraggins, R.L. The occurrence of two new prostaglandin derivatives (15-epi-PGA2 and its acetate, methyl ester) in the Gorgonian Plaxaura homomalla. Chemistry of Coelenterates. XV. Tetrahedron Lett. 1969, 10, 5185–5188, doi:10.1016/S0040-4039(01)88918-8.
[8]  Moore, R.E.; Scheuer, P.J. Palytoxin: A new marine toxin from a Coelenterate. Science 1971, 172, 495–498.
[9]  Kohl, A.C.; Kerr, R.G. Pseudopterosin biosynthesis: Aromatization of the diterpene cyclase product, Elisabethatriene. Mar. Drugs 2003, 1, 54–65, doi:10.3390/md101054.
[10]  Crone, H.D.; Keen, T.E.B. Chromatographic properties of the hemolysin from the cnidarian Chironex fleckeri. Toxicon 1969, 7, 79–87, doi:10.1016/0041-0101(69)90068-3.
[11]  Keen, T.E.B.; Crone, H.D. The hemolytic properties of extracts of tentacles from the cnidarian Chironex fleckeri. Toxicon 1969, 7, 55–63, doi:10.1016/0041-0101(69)90164-0.
[12]  Keen, T.E.B. Surface properties of the hemolytic fraction derived from tentacles extracts of Chironex fleckeri. Toxicon 1972, 10, 587–596, doi:10.1016/0041-0101(72)90120-1.
[13]  Tamkun, M.M.; Hessinger, D.A. Isolation and partial characterization of a hemolytic and toxic protein from the nematocyst venom of the Portuguese Man-of-War, Physalia physalis. Biochim. Biophys. Acta 1981, 667, 87–98, doi:10.1016/0005-2795(81)90069-6.
[14]  Hessinger, D.A.; Lenhoff, H.M. Binding of active and inactive hemolytic factor of sea anemone nematocyst venom to red blood cells. Biochem. Biophys. Res. Commun. 1973, 53, 475–481, doi:10.1016/0006-291X(73)90686-4.
[15]  Hessinger, D.A.; Lenhoff, H.M. Assay and properties of the hemolysis activity of pure venom from the nematocysts of the acontia of the sea anemone Aiptasia pallida. Arch. Biochem. Biophys. 1973, 159, 629–638, doi:10.1016/0003-9861(73)90500-6.
[16]  Macek, P.; Lebez, D. Kinetics of hemolysis induced by equinatoxin, a cytolytic toxin from the sea anemone Actinia equina. Effect of some ions and pH. Toxicon 1981, 19, 233–240, doi:10.1016/0041-0101(81)90026-X.
[17]  Turk, T.; Macek, P. Effect of different membrane lipids on the hemolytic activity of equinatoxin II from Actinia equina. Period. Biol. 1986, 88, 216–217.
[18]  Macek, P.; Lebez, D. Isolation and characterization of three lethal and hemolytic toxins from the sea anemone Actinia equina L. Toxicon 1988, 26, 441–451, doi:10.1016/0041-0101(88)90183-3.
[19]  Cariello, L.; Romano, G.; Spagnuolo, A.; Zanetti, L. Isolation and partial characterization of rhizolysin, a high molecular weight protein with hemolytic activity from the jellyfish Rhizostoma pulmo. Toxicon 1988, 26, 1057–1065, doi:10.1016/0041-0101(88)90204-8.
[20]  Long, K.O.; Burnett, J.W. Isolation, characterization, and comparison of hemolytic peptides in nematocyst venoms of two species of jellyfish (Chrysaora quinquecirrha and Cyanea capillata). Comp. Biochem. Physiol. B 1989, 94, 641–646.
[21]  Hessinger, D.A.; Lenhoff, H.M. Membrane structure and function. Mechanism of hemolysis induced by nematocyst venom: Roles of phospholipase A and direct lytic factor. Arch. Biochem. Biophys. 1976, 176, 603–613, doi:10.1016/0003-9861(76)90297-6.
[22]  Kawabata, T.; Lindsay, D.J.; Kitamura, M.; Konishi, S.; Nishikawa, J.; Nishida, S.; Kamio, M.; Nagai, H. Evaluation of the bioactivities of water-soluble extracts from twelve deep-sea jellyfish species. Fish. Sci. 2013, 79, 487–494, doi:10.1007/s12562-013-0612-y.
[23]  Anderluh, G.; Ma?ek, P. Cytolytic peptide and protein toxins from sea anemones (Anthozoa: Actiniaria). Toxicon 2002, 40, 111–124.
[24]  Avila, A.D.; Mateo de Acosta, C.; Lage, A. A new immunotoxin built by linking a hemolytic toxin to a monoclonal antibody specific for immature T lymphocytes. Int. J. Cancer 1988, 42, 568–571, doi:10.1002/ijc.2910420417.
[25]  Cline, E.I.; Wiebe, L.I.; Young, J.D.; Samuel, J. Toxic effects of the novel protein UpI from the sea anemone Urticina piscivora. Pharmacol. Res. 1995, 32, 309–314, doi:10.1016/S1043-6618(05)80020-9.
[26]  Jiang, X.; Chen, H.; Yang, W.; Liu, Y.; Liu, W.; Wei, J.; Tu, H.; Xie, X.; Wang, L.; Xu, A. Functional expression and characterization of an acidic actinoporin from sea anemone Sagartia rosea. Biochem. Biophys. Res. Commun. 2003, 312, 562–570, doi:10.1016/j.bbrc.2003.10.159.
[27]  Marino, A.; Morabito, R.; La Spada, G. Factors altering the haemolytic power of crude venom from Aiptasia. mutabilis (Anthozoa) nematocysts. Comp. Biochem. Physiol. A 2009, 152, 418–422, doi:10.1016/j.cbpa.2008.11.016.
[28]  Miyamoto, T.; Yamada, K.; Ikeda, N.; Komori, T.; Higuchi, R. Bioactive terpenoids from Octocorallia, I. Bioactive diterpenoids: Litophynols A and B from the mucus of the soft coral Litophyton sp. J. Nat. Prod. 1994, 57, 1212–1219, doi:10.1021/np50111a004.
[29]  Karthikayalu, S.; Rama, V.; Kirubagaran, R.; Venkatesan, R. Hemolytic toxin from the soft coral Sarcophyton trocheliophorum: Isolation and physiological characterization. J. Venom. Anim. Toxins. Incl. Trop. Dis. 2010, 16, 107–120.
[30]  Reim?o, J.Q.; Migotto, A.E.; Kossuga, M.H.; Berlinck, R.G.; Tempone, A.G. Antiprotozoan activity of Brazilian marine cnidarian extracts and of a modified steroid from the octocoral Carijoa riisei. Parasitol. Res. 2008, 103, 1445–1450, doi:10.1007/s00436-008-1154-6.
[31]  Brinkman, D.L.; Burnell, J.N. Biochemical and molecular characterisation of cubozoan protein toxins. Toxicon 2009, 54, 1162–1173, doi:10.1016/j.toxicon.2009.02.006.
[32]  Azuma, H.; Ishikawa, M.; Nakajima, T.; Satoh, A.; Sekizaki, S. Calcium-dependent contractile response of arterial smooth muscle to a jellyfish toxin (pCrTX: Carybdea rastonii). Br. J. Pharmacol. 1986, 88, 549–559, doi:10.1111/j.1476-5381.1986.tb10235.x.
[33]  Azuma, H.; Sekizaki, S.; Satoh, A.; Nakajima, T.; Ishikawa, M. Platelet aggregation caused by a partially purified jellyfish toxin from Carybdea rastonii. Toxicon 1986, 24, 489–499, doi:10.1016/0041-0101(86)90081-4.
[34]  Azuma, H.; Sekizaki, S.; Satoh, A.; Nakajima, T. Platelet aggregation caused by Carybdea rastonii toxins (CrTX-I, II and III) obtained from a jellyfish, Carybdea rastonii (42305). Proc. Soc. Exp. Biol. Med. 1986, 182, 34–42, doi:10.3181/00379727-182-42305.
[35]  Othman, I.; Eldila, M.T.; Mustafa, M.R.; Musa, M.Y.; Nor Azila, M.A. Studies on the jellyfish Carybdea rastoni. Toxicon 1996, 34, 167–168.
[36]  Rottini, G.; Gusmani, L.; Parovel, E.; Avian, M.; Patriarca, P. Purification and properties of a cytolytic toxin in venom of the jellyfish Carybdea marsupialis. Toxicon 1995, 33, 315–326, doi:10.1016/0041-0101(94)00174-7.
[37]  Sánchez-Rodríguez, J.; Torrens, E.; Segura-Puertas, L. Partial purification and characterisation of a novel neurotoxin and three cytolysins from the box jellyfish (Carybdea marsupialis) nematocyst venom. Arch. Toxicol. 2006, 80, 163–168, doi:10.1007/s00204-005-0023-7.
[38]  Chung, J.J.; Fernandez, K.; Ratnapala, L.A.; Cooke, I.M.; Yanagihara, A.A. Partial purification and characterization of Hawaiian box jellyfish (Carybdea alata) venom. Pac. Sci. 2000, 54, 90.
[39]  Chung, J.J.; Ratnapala, L.A.; Cooke, I.M.; Yanagihara, A.A. Partial purification and characterization of a hemolysin (CAH1) from Hawaiian box jellyfish (Carybdea alata) venom. Toxicon 2001, 39, 981–990, doi:10.1016/S0041-0101(00)00237-3.
[40]  Nagai, H.; Takuwa-Kuroda, K.; Nakao, M.; Oshiro, N.; Iwanaga, S.; Nakajima, T. A novel protein toxin from the deadly box jellyfish (sea wasp, habu-kurage) Chiropsalmus quadrigatus. Biosci. Biotechnol. Biochem. 2002, 66, 97–102, doi:10.1271/bbb.66.97.
[41]  Brinkman, D.; Burnell, J. Identification, cloning and sequencing of two major venom proteins from the box jellyfish, Chironex fleckeri. Toxicon 2007, 50, 850–860, doi:10.1016/j.toxicon.2007.06.016.
[42]  Brinkman, D.; Burnell, J. Partial purification of cytolytic venom proteins from the box jellyfish, Chironex fleckeri. Toxicon 2008, 51, 853–863, doi:10.1016/j.toxicon.2007.12.017.
[43]  Allavena, A.; Mariottini, G.L.; Carli, A.M.; Contini, S.; Martelli, A. In vitro evaluation of the cytotoxic, hemolytic and clastogenic activities of Rhizostoma pulmo toxin(s). Toxicon 1998, 36, 933–936, doi:10.1016/S0041-0101(97)00171-2.
[44]  Mazzei, M.; Allavena, A.; Garzoglio, R.; Mariottini, G.L.; Carli, A. Chemical and chromatographic characteristics of toxin from the jellyfish Rhizostoma pulmo Agassiz (Cnidaria: Scyphozoa). Pharmacol. Toxicol. 1995, 76, 38.
[45]  Kang, C.; Munawir, A.; Cha, M.; Sohn, E.-T.; Lee, H.; Kim, J.-S.; Yoon, W.D.; Lim, D.; Kim, E. Cytotoxicity and hemolytic activity of jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae) venom. Comp. Biochem. Physiol. C 2009, 150, 85–90.
[46]  Helmholz, H.; Ruhnau, C.; Schütt, C.; Prange, A. Comparative study on the cell toxicity and enzymatic activity of two northern scyphozoan species Cyanea capillata (L.) and Cyanea lamarckii (Péron & Léslieur). Toxicon 2007, 50, 53–64, doi:10.1016/j.toxicon.2007.02.014.
[47]  Helmholz, H.; Wiebring, A.; Lassen, S.; Ruhnau, C.; Schuett, C.; Prange, A. Cnidom analysis combined with an in vitro evaluation of the lytic, cyto- and neurotoxic potential of Cyanea capillata (Cnidaria: Scyphozoa). Sci. Mar. 2012, 76, 339–348, doi:10.3989/scimar.03381.16E.
[48]  Wang, T; Wen, X.J.; Mei, X.B.; Wang, Q.Q.; He, Q.; Zheng, J.M.; Zhao, J.; Xiao, L.; Zhang, L.M. Lipid peroxidation is another potential mechanism besides pore-formation underlying hemolysis of tentacle extract from the jellyfish Cyanea capillata. Mar. Drugs 2013, 11, 67–80, doi:10.3390/md11010067.
[49]  Marino, A.; Crupi, R.; Rizzo, G.; Morabito, R.; Musci, G.; La Spada, G. The unusual toxicity and stability properties of crude venom from isolated nematocysts of Pelagia noctiluca. Cell. Mol. Biol. 2007, 53, 994–1002.
[50]  Marino, A.; Morabito, R.; La Spada, G. Toxicity of crude venom from the Scyphozoan Pelagia noctiluca. Comp. Biochem. Physiol. A 2009, 154, 30, doi:10.1016/j.cbpa.2009.05.103.
[51]  Marino, A.; Morabito, R.; Pizzata, T.; La Spada, G. Effect of various factors on Pelagia noctiluca (Cnidaria, Scyphozoa) crude venom-induced haemolysis. Comp. Biochem. Physiol. A 2008, 151, 144–149, doi:10.1016/j.cbpa.2008.06.013.
[52]  Maisano, M.; Trapani, M.R.; Parrino, V.; Parisi, M.G.; Cappello, T.; D’Agata, A.; Benenati, G.; Natalotto, A.; Mauceri, A.; Cammarata, M. Haemolytic activity and characterization of nematocyst venom from Pelagia noctiluca (Cnidaria: Scyphozoa). Ital. J. Zool. 2013, 80, 168–176, doi:10.1080/11250003.2012.758782.
[53]  Kikuchi, H.; Tsukitani, Y.; Iguchi, K.; Yamada, Y. Clavulones, new type of prostanoids from the stolonifer Clavularia viridis Quoy and Gaimard. Tetrahedron Lett. 1982, 23, 5171–5174, doi:10.1016/S0040-4039(00)85788-3.
[54]  Honda, A.; Yamamoto, Y.; Mori, Y.; Yamada, Y.; Kikuchi, H. Antileukemic effect of coral-prostanoids clavulones from the stolonifer Clavularia viridis on human myeloid leukemia (HL-60) cells. Biochem. Biophys. Res. Commun. 1985, 130, 515–523, doi:10.1016/0006-291X(85)90447-4.
[55]  Hondo, A.; Mori, Y.; Iguchi, K.; Yamada, Y. Antiproliferative and cytotoxic effects of newly discovered halogenated coral prostanoids from the Japanese stolonifer Clavularia viridis on human myeloid leukemia cells in culture. Mol. Pharmacol. 1987, 32, 530–535.
[56]  Mori, K.; Iguchi, K.; Yamada, N.; Yamada, Y.; Inouye, Y. Bioactive marine diterpenoids from Japanese soft coral of Clavularia sp. Chem. Pharm. Bull. 1988, 36, 2840–2852, doi:10.1248/cpb.36.2840.
[57]  Yabe, T.; Yamada, H.; Shimomura, M.; Miyaoka, H.; Yamada, Y. Induction of choline acetyltransferase activity in cholinergic neurons by stolonidiol: Structure-activity relationship. J. Nat. Prod. 2000, 63, 433–435, doi:10.1021/np990263a.
[58]  Watanabe, K.; Sekine, M.; Takahashi, H.; Iguchi, K. New halogenated marine prostanoids with cytotoxic activity from the Okinawan soft coral Clavularia viridis. J. Nat. Prod. 2001, 64, 1421–1425, doi:10.1021/np010244c.
[59]  Duh, C.-Y.; Chia, M.-C.; Wang, S.-K.; Chen, H.-J.; El-Gamal, A.A.H.; Dai, C.-F. Cytotoxic dolabellane diterpenes from the Formosan soft coral Clavularia inflata. J. Nat. Prod. 2001, 64, 1028–1031, doi:10.1021/np010106n.
[60]  Hou, R.-S.; Duh, C.-Y.; Chiang, M.Y.; Lin, C.-N. Sinugibberol, a new cytotoxic cembranoid diterpene from the soft Coral Sinularia gibberosa. J. Nat. Prod. 1995, 58, 1126–1130, doi:10.1021/np50121a026.
[61]  Iwashima, M.; Matsumoto, Y.; Takahashi, H.; Iguchi, K. New marine cembrane-type diterpenoids from the okinawan soft coral Clavularia koellikeri. J. Nat. Prod. 2000, 63, 1647–1652, doi:10.1021/np000309w.
[62]  Schmitz, F.J.; Schulz, M.M.; Siripitayananon, J.; Hossain, M.B.; van der Helm, D. New diterpenes from the gorgonian Solenopodium excavatum. J. Nat. Prod. 1993, 56, 1339–1349, doi:10.1021/np50098a018.
[63]  Cheng, C.-H.; Chung, H.-M.; Hwang, T.-L.; Lu, M.-C.; Wen, Z.-H.; Kuo, Y.-H.; Wang, W.-H.; Sung, P.-J. Echinoclerodane A: A new bioactive clerodane-type diterpenoid from a gorgonian coral Echinomuricea sp. Molecules 2012, 17, 9443–9450, doi:10.3390/molecules17089443.
[64]  Chung, H.-M.; Hong, P.-H.; Su, J.-H.; Hwang, T.-L.; Lu, M.-C.; Fang, L.-S.; Wu, Y.-C.; Li, J.-J.; Chen, J.-J.; Wang, W.-H.; et al. Bioactive compounds from a gorgonian coral Echinomuricea sp. (Plexauridae). Mar. Drugs 2012, 10, 1169–1179, doi:10.3390/md10051169.
[65]  Rueda, A.; Zubía, E.; Ortega, M.J.; Salvá, J. Structure and cytotoxicity of new polyhydroxylated sterols from the Caribbean gorgonian Plexaurella grisea. Steroids 2001, 66, 897–904, doi:10.1016/S0039-128X(01)00122-2.
[66]  Rueda, A.; Zubía, E.; Ortega, M.J.; Salvá, J. New acyclic sesquiterpenes and norsesquiterpenes from the Caribbean Gorgonian Plexaurella grisea. J. Nat. Prod. 2001, 64, 401–405, doi:10.1021/np000540+.
[67]  El Sayed, K.A.; Hamann, M.T. A new norcembranoid dimer from the Red Sea soft coral Sinularia gardineri. J. Nat. Prod. 1996, 59, 687–689, doi:10.1021/np960207z.
[68]  Choi, Y.-H.; Schmitz, F.J. Cytotoxic acylated spermidine from a soft coral, Sinularia sp. J. Nat. Prod. 1997, 60, 495–496, doi:10.1021/np960662v.
[69]  Weinheimer, A.J.; Matson, J.A.; Hossain, M.B.; van der Helm, D. Marine anticancer agents: Sinularin and dihydrosinularin, new cembranolides from the soft coral, Sinularia flexibilis. Tetrahedron Lett. 1977, 18, 2923–2926, doi:10.1016/S0040-4039(01)83115-4.
[70]  Duh, C.Y.; Wang, S.K.; Tseng, H.-K.; Sheu, J.-H.; Chiang, M.Y. Novel cytotoxic cembranoids from the soft coral Sinularia flexibilis. J. Nat. Prod. 1998, 61, 844–847, doi:10.1021/np980021v.
[71]  Reddy, B.S.; Rao, V.D.; Rao, B.S.; Dhananjaya, N.; Kuttan, R.; Babu, T.D. Isolation and structural determination of new sphingolipids and pharmacological activity of Africanene and other metabolites from Sinularia leptoclados. Chem. Pharm. Bull. 1999, 47, 1214–1220, doi:10.1248/cpb.47.1214.
[72]  Chai, M.C.; Wang, S.K.; Dai, C.F.; Duh, C.-Y. A cytotoxic lobane diterpene from the formosan soft coral Sinularia inelegans. J. Nat. Prod. 2000, 63, 843–844, doi:10.1021/np990539e.
[73]  Su, J.; Yang, R.; Kuang, Y.; Zeng, L. A new cembranolide from the soft coral Sinularia capillosa. J. Nat. Prod. 2000, 63, 1543–1545, doi:10.1021/np0000264.
[74]  Lu, Y.; Su, H.-J.; Chen, Y.-H.; Wen, Z.-H.; Sheu, J.-H.; Su, J.-H. Anti-inflammatory Cembranoids from the Formosan soft coral Sinularia discrepans. Arch. Pharm. Res. 2011, 34, 1263–1267, doi:10.1007/s12272-011-0804-x.
[75]  Kikuchi, H.; Manda, T.; Kobayashi, K.; Yamada, Y.; Iguchi, K. Anti-tumor activity of lemnalol isolated from the soft coral Lemnalia tenuis Verseveldt. Chem. Pharm. Bull. 1983, 31, 1086–1088, doi:10.1248/cpb.31.1086.
[76]  Jean, Y.H.; Chen, W.F.; Duh, C.Y.; Huang, S.Y.; Hsu, C.H.; Lin, C.S.; Sung, C.S.; Chen, I.M.; Wen, Z.H. Inducible nitric oxide synthase and cyclooxygenase-2 participate in anti-inflammatory and analgesic effects of the natural marine compound lemnalol from Formosan soft coral Lemnalia cervicorni. Eur. J. Pharmacol. 2008, 578, 323–331, doi:10.1016/j.ejphar.2007.08.048.
[77]  Duh, C.Y.; Wang, S.K.; Chung, S.G.; Chou, G.-C.; Dai, C.-F. Cytotoxic cembrenolides and steroids from the formosan soft coral Sarcophyton crassocaule. J. Nat. Prod. 2000, 63, 1634–1637, doi:10.1021/np0002381.
[78]  Dong, H.; Gou, Y.-L.; Kini, R.M.; Xu, H.-X.; Chen, S.-X.; Teo, S.L.M.; But, P.P.-H. A new cytotoxic polyhydroxysterol from soft coral Sarcophyton trocheliophorum. Chem. Pharm. Bull. 2000, 48, 1087–1089, doi:10.1248/cpb.48.1087.
[79]  Wang, G.-H.; Ahmed, A.F.; Kuo, Y.-H.; Sheu, J.-H. Two new subergane-based sesquiterpenes from a Taiwanese Gorgonian coral Subergorgia suberosa. J. Nat. Prod. 2002, 65, 1033–1036, doi:10.1021/np0106586.
[80]  Wang, G.-H.; Ahmed, A.F.; Sheu, J.-H.; Duh, C.-Y.; Shen, Y.-C.; Wang, L.-T. Suberosols A–D, four new sesquiterpenes with β-caryophyllene skeletons from a Taiwanese gorgonian coral Subergorgia suberosa. J. Nat. Prod. 2002, 65, 887–891, doi:10.1021/np010586i.
[81]  Wu, S.-L.; Sung, P.-J.; Chiang, M.Y.; Wu, J.-Y.; Sheu, J.-H. New polyoxygenated briarane diterpenoids, briaexcavatolides O-R, from the gorgonian Briareum excavatum. J. Nat. Prod. 2001, 64, 1415–1420, doi:10.1021/np010253l.
[82]  Morales, J.J.; Lorenzo, D.; Rodríguez, A.D. Application of two-dimensional NMR spectroscopy in the structural determination of marine natural products. Isolation and total structural assignment of 4-deoxyasbestinin diterpenes from the Caribbean gorgonian Briareum asbestinum. J. Nat. Prod. 1991, 54, 1368–1382, doi:10.1021/np50077a021.
[83]  Sheu, J.-H.; Sung, P.-J.; Huang, L.-H.; Lee, S.-F.; Wu, T.; Chang, B.-Y.; Duh, C.-Y.; Fang, L.-S.; Soong, K.; Lee, T.-J. New cytotoxic briaran diterpenes from the Formosan gorgonian Briareum sp. J. Nat. Prod. 1996, 59, 935–938, doi:10.1021/np960218s.
[84]  Sheu, J.-H.; Sung, P.-J.; Cheng, M.-C.; Liu, H.-Y.; Fang, L.-S.; Duh, C.-Y.; Chiang, M.Y. Novel cytotoxic diterpenes, Excavatolides A-E, isolated from the Formosan gorgonian Briareum excavatum. J. Nat. Prod. 1998, 61, 602–608, doi:10.1021/np970553w.
[85]  Sung, P.-J.; Su, J.-H.; Wang, G.-H.; Lin, S.-F.; Duh, C.-Y.; Sheu, J.-H. Excavatolides F-M, new briarane diterpenes from the gorgonian Briareum excavatum. J. Nat. Prod. 1999, 62, 457–463, doi:10.1021/np980446h.
[86]  Sung, P.-J.; Su, J.-H.; Duh, C.-Y.; Chiang, M.Y.; Sheu, J.-H. Briaexcavatolides K-N, new briarane diterpenes from the gorgonian Briareum excavatum. J. Nat. Prod. 2001, 64, 318–323, doi:10.1021/np000287d.
[87]  Rho, J.-R.; Lee, H.-S.; Seo, Y.; Cho, K.W.; Shin, J. New xenicane diterpenoids from the gorgonian Acalycigorgia inermis. J. Nat. Prod. 2000, 63, 254–257, doi:10.1021/np990392r.
[88]  Rho, J.-R.; Oh, M.-S.; Jang, K.H.; Cho, K.W.; Shin, J. New xenicane diterpenoids from the gorgonian Acalycigorgia inermis. J. Nat. Prod. 2001, 64, 540–543, doi:10.1021/np0005154.
[89]  Zeng, L.M.; Li, X.; Su, J.; Fu, X.; Schmitz, F.J. A new cytotoxic dihydroxy sterol from the soft coral Alcyonium patagonicum. J. Nat. Prod. 1995, 58, 296–298, doi:10.1021/np50116a025.
[90]  Palermo, J.A.; Rodríguez Brasco, M.F.; Spagnuolo, C.; Seldes, A.M. Illudalane sesquiterpenoids from the soft coral Alcyonium paessleri: The first natural nitrate esters. J. Org. Chem. 2000, 65, 4482–4486, doi:10.1021/jo991740x.
[91]  Rodríguez Brasco, M.F.; Seldes, A.M.; Palermo, J.A. Paesslerins A and B: Novel tricyclic sesquiterpenoids from the soft coral Alcyonium paessleri. Org. Lett. 2001, 3, 1415–1417, doi:10.1021/ol006684x.
[92]  Rodríguez, A.D.; González, E.; González, C. Additional dolabellane diterpenes from the Caribbean gorgonian octocoral Eunicea laciniata. J. Nat. Prod. 1995, 58, 226–232, doi:10.1021/np50116a010.
[93]  Rodríguez, A.D.; Soto, J.J.; Pina, I.C. Uprolides D-G, 2. A rare family of 4,7-oxa-bridged cembranolides from the caribbean gorgonian Eunicea mammosa. J. Nat. Prod. 1995, 58, 1209–1216, doi:10.1021/np50122a008.
[94]  Rodríguez, A.D.; Acosta, A.L. New cembranoid diterpenes and a geranylgeraniol derivative from the common Caribbean sea whip Eunicea succinea. J. Nat. Prod. 1997, 60, 1134–1138, doi:10.1021/np970373m.
[95]  Shi, Y.-P.; Rodríguez, A.D.; Barnes, C.L.; Sánchez, J.A.; Raptis, R.G.; Baran, P. New terpenoid constituents from Eunicea pinta. J. Nat. Prod. 2002, 65, 1232–1241, doi:10.1021/np0200820.
[96]  Kitagawa, I.; Cui, Z.; Byeng Wha, S.; Kobayashi, M.; Kyogoku, Y. Marine natural products XVII. Nephtheoxydiol, a new cytotoxic hydroperoxy-germacrane sesquiterpene, and related sesquiterpenoids from an okinawan soft coral of Nephthea sp. (Nephtheidae). Chem. Pharm. Bull. 1987, 35, 124–135, doi:10.1248/cpb.35.124.
[97]  Duh, C.Y.; Wang, S.K.; Chu, M.-J.; Sheu, J.-H. Cytotoxic sterols from the soft coral Nephthea erecta. J. Nat. Prod. 1998, 61, 1022–1024, doi:10.1021/np9800497.
[98]  El-Gamal, A.A.H.; Chiang, C.-Y.; Huang, S.-H.; Wang, S.-K.; Duh, C.-Y. Xenia diterpenoids from the Formosan soft coral Xenia blumi. J. Nat. Prod. 2005, 68, 1336–1340, doi:10.1021/np058047r.
[99]  El-Gamal, A.A.H.; Wang, S.-K.; Duh, C.-Y. Cytotoxic xenia diterpenoids from the soft coral Xenia umbellata. J. Nat. Prod. 2006, 69, 338–341, doi:10.1021/np058093r.
[100]  Kato, T.; Fukushima, M. Advances in Prostaglandin, Thromboxane, and Leukotriene Research; Hayaishi, O., Yamamoto, S., Eds.; Raven Press: New York, NY, USA, 1985; Volume Volumm 15, pp. 415–418.
[101]  Baker, B.J.; Scheuer, P.J. The punaglandins: 10-chloroprostanoids from the octocoral Telesto riisei. J. Nat. Prod. 1994, 57, 1346–1353, doi:10.1021/np50112a003.
[102]  Kioshihara, Y.; Takamori, R.; Nomura, K.; Sugiura, S.; Kurozumi, S. Enhancement of in vitro mineralization in human osteoblasts by a novel prostaglandin A1 derivative TEI-3313. J. Pharmacol. Exp. Ther. 1991, 258, 1120–1126.
[103]  Liyanage, G.K.; Schmitz, F.J. Cytotoxic amides from the octocoral Telesto riisei. J. Nat. Prod. 1996, 59, 148–151, doi:10.1021/np960032t.
[104]  Seleghim, M.H.R.; Lira, S.P.; Kossuga, M.H.; Batista, T.; Berlinck, R.G.S.; Hajdu, E.; Muricy, G.; da Rocha, R.M.; do Nascimento, G.G.F.; Silva, M.; et al. Antibiotic, cytotoxic and enzyme inhibitory activity of crude extracts from Brazilian marine invertebrates. Braz. J. Pharmacogn. 2007, 17, 287–318.
[105]  Kossuga, M.H.; Lira, S.P.; Nascimento, A.M.; Gambardella, M.T.P.; Berlinck, R.G.S.; Torres, Y.R.; Nascimento, G.G.F.; Pimenta, E.F.; Silva, M.; Thiemann, O.H.; et al. Isolamento e atividades biológicas de produtos naturais das esponjas Monanchora arbuscula, Aplysina sp., Petromica ciocalyptoides e Topsentia ophiraphidites, da Ascídia Didemnum ligulum e do Octocoral Carijoa riisei. Química Nova 2007, 30, 1194–1202.
[106]  Zhao, H.Y.; Shao, C.L.; Li, Z.Y.; Han, L.; Cao, F.; Wang, C.Y. Bioactive pregnane steroids from a South China Sea gorgonian Carijoa sp. Molecules 2013, 18, 3458–3466, doi:10.3390/molecules18033458.
[107]  Uchio, Y.; Toyota, J.; Nozaki, H.; Nakayama, M.; Nishizono, Y.; Hase, T. Lobohedleolide and (7Z)-lobohedleolide, new cembranolides from the soft coral Lobophytum hedleyi Whitelegge. Tetrahedron Lett. 1981, 22, 4089–4092, doi:10.1016/S0040-4039(01)82073-6.
[108]  Wang, S.-K.; Duh, C.-Y.; Wu, Y.-C.; Wang, Y.; Cheng, M.-C.; Soong, K.; Fang, L.-S. Studies on formosan soft corals, II. Cytotoxic cembranolides from the soft coral Lobophytum michaelae. J. Nat. Prod. 1992, 55, 1430–1435, doi:10.1021/np50088a007.
[109]  Duh, C.Y.; Wang, S.K.; Huang, B.T.; Dai, C.-F. Cytotoxic cembrenolide diterpenes from the formosan soft coral Lobophytum crassum. J. Nat. Prod. 2000, 63, 884–885, doi:10.1021/np990620h.
[110]  Lopp, A.; Pihlak, A.; Paves, H.; Samuel, K.; Koljak, R.; Samel, N. The effect of 9,11-secosterol, a newly discovered compound from the soft coral Gersemia fruticosa, on the growth and cell cycle progression of various tumor cells in culture. Steroids 1994, 59, 274–281, doi:10.1016/0039-128X(94)90113-9.
[111]  Ortega, M.J.; Zubía, E.; Salva, J. Structure and absolute configuration of palmonine F, a new eunicellin-based diterpene from the gorgonian Eunicella verrucosa. J. Nat. Prod. 1994, 57, 1584–1586, doi:10.1021/np50113a021.
[112]  Seo, Y.; Cho, K.W.; Chung, H.; Lee, H.-S.; Shin, J. New secosteroids from a gorgonian of the genus Muricella. J. Nat. Prod. 1998, 61, 1441–1443, doi:10.1021/np980220e.
[113]  Kittakoop, P.; Suttisri, R.; Chaichantipyuth, C.; Vethchagarun, S.; Suwanborirux, K. Norpregnane glycosides from a Thai soft coral, Scleronephthya pallida. J. Nat. Prod. 1999, 62, 318–320, doi:10.1021/np980273w.
[114]  Bokesch, H.R.; Blunt, J.W.; Westergaard, C.K.; Cardellina, J.H., II; Johnson, T.R.; Michael, J.A.; McKee, T.C.; Hollingshead, M.G.; Boyd, M.R. Alertenone, a dimer of suberosenone from Alertigorgia sp. J. Nat. Prod. 1999, 62, 633–635, doi:10.1021/np980464z.
[115]  Garrido, L.; Zubía, E.; Ortega, M.J.; Salvá, J. Isolation and structure elucidation of new cytotoxic steroids from the gorgonian Leptogorgia sarmentosa. Steroids 2000, 65, 85–88, doi:10.1016/S0039-128X(99)00083-5.
[116]  Sheu, J.-H.; Hung, K.-C.; Wang, G.-H.; Duh, C.-Y. New cytotoxic sesquiterpenes from the gorgonian Isis hippuris. J. Nat. Prod. 2000, 63, 1603–1607, doi:10.1021/np000271n.
[117]  Chen, S.-P.; Sung, P.-J.; Duh, C.-Y.; Dai, C.-F.; Sheu, J.-H. Junceol A, a new sesquiterpenoid from the sea pen Virgularia juncea. J. Nat. Prod. 2001, 64, 1241–1242, doi:10.1021/np010192r.
[118]  Shen, Y.-C.; Lin, Y.-C.; Ko, C.-L.; Wang, L.-T. New briaranes from the taiwanese Gorgonian Junceella juncea. J. Nat. Prod. 2003, 66, 302–305, doi:10.1021/np0203584.
[119]  Nakao, Y.; Yoshida, S.; Matsunaga, S.; Fusetani, N. (Z)-Sarcodictyin A, a new highly cytotoxic diterpenoid from the soft coral Bellonella albiflora. J. Nat. Prod. 2003, 66, 524–527, doi:10.1021/np0205452.
[120]  Yoshikawa, K.; Kanekuni, S.; Hanahusa, M.; Arihara, S.; Ohta, T. Polyhydroxylated sterols from the octocoral Dendronephthya gigantea. J. Nat. Prod. 2000, 63, 670–672, doi:10.1021/np990512v.
[121]  Reddy, N.S.; Reed, J.K.; Longley, R.E.; Wright, A.E. Two new cytotoxic linderazulenes from a deep-sea gorgonian of the genus Paramuricea. J. Nat. Prod. 2005, 68, 248–250, doi:10.1021/np040147u.
[122]  Chao, C.H.; Wu, Y.C.; Wen, Z.H.; Sheu, J.H. Steroidal carboxylic acids from soft coral Paraminabea acronocephala. Mar. Drugs 2013, 11, 136–145, doi:10.3390/md11010136.
[123]  Rho, J. New bioactive steroids from the Gorgonian Acalycigorgia inermis. Bull. Korean Chem. Soc. 2000, 21, 518–520.
[124]  Maia, L.F.; Epifanio, R.A.; Fenical, W. New cytotoxic sterol glycosides from the octocoral Carijoa (Telesto) riisei. J. Nat. Prod. 2000, 63, 1427–1430, doi:10.1021/np9906323.
[125]  Duh, C.Y.; Wang, S.K.; Weng, Y.L. Brassicolene, a novel cytotoxic diterpenoid from the Formosan soft coral Nephthea brassica. Tetrahedron Lett. 2000, 41, 1401–1403, doi:10.1016/S0040-4039(99)02302-3.
[126]  Xu, L.; Patrick, B.O.; Roberge, M.; Allen, T.; van Ofwegen, L.; Andersen, R.J. New diterpenoids from the octocoral Pachyclavularia violacea collected in Papua New Guinea. Tetrahedron 2000, 56, 9031–9037, doi:10.1016/S0040-4020(00)00756-0.
[127]  Naz, S.; Kerr, R.G.; Narayanan, R. New antiproliferative epoxysecosterols from Pseudopterogorgia americana. Tetrahedron Lett. 2000, 41, 6035–6040, doi:10.1016/S0040-4039(00)01015-7.
[128]  Sheu, J.H.; Chang, K.C.; Duh, C.Y. A cytotoxic 5α,8α-epidioxysterol from a soft coral Sinularia species. J. Nat. Prod. 2000, 63, 149–151, doi:10.1021/np9903954.
[129]  Mayer, A.M.S.; Gustafson, K.R. Marine pharmacology in 2000: Antitumor and cytotoxic compounds. Int. J. Cancer 2003, 105, 291–299, doi:10.1002/ijc.11080.
[130]  Jiménez, C.; Crews, P. 13C-NMR assignments and cytotoxicity assessment of zoanthoxanthin alkaloids from zoanthid corals. J. Nat. Prod. 1993, 56, 9–14, doi:10.1021/np50091a002.
[131]  Rashid, M.A.; Gustafson, K.R.; Cardellina, J.H., II; Boyd, M.R. Mycalolides D and E, new cytotoxic macrolides from a collection of the stony coral Tubastrea faulkneri. J. Nat. Prod. 1995, 58, 1120–1125, doi:10.1021/np50121a025.
[132]  Fusetani, N.; Toyoda, T.; Asai, N.; Matsunaga, S.; Maruyama, T. Montiporic acids A and B, cytotoxic and antimicrobial polyacetylene carboxylic acids from eggs of the Scleractinian coral Montipora digitata. J. Nat. Prod. 1996, 59, 796–797, doi:10.1021/np9604036.
[133]  Bae, B.H.; Im, K.S.; Choi, W.C.; Hong, J.; Lee, C.-O.; Choi, J.S.; Son, B.W.; Song, J.-I.; Jung, J.H. New acetylenic compounds from the stony coral Montipora sp. J. Nat. Prod. 2000, 63, 1511–1514, doi:10.1021/np0002076.
[134]  Alam, N.; Bae, B.H.; Hong, J.; Lee, C.O.; Im, K.S.; Jung, J.H. Cytotoxic diacetylenes from the stony coral Montipora species. J. Nat. Prod. 2001, 64, 1059–1063, doi:10.1021/np010148b.
[135]  Bellocci, M.; Sala, G.L.; Prandi, S. The cytolytic and cytotoxic activities of palytoxin. Toxicon 2011, 57, 449–459, doi:10.1016/j.toxicon.2010.12.013.
[136]  Mariottini, G.L.; Pane, L. The role of Cnidaria in drug discovery. A review on CNS implications and new perspectives. Rec. Pat. CNS Drug Discov. 2013, 8, 110–122, doi:10.2174/15748898113089990003.
[137]  Gabrielson, E.W.; Kuppusamy, P.; Povey, A.C.; Zweier, J.L.; Harris, C.C. Measurement of neutrophil activation and epidermal cell toxicity by palytoxin and 12-O-tetradecanoylphorbol-13-acetate. Carcinogenesis 1992, 13, 1671–1674, doi:10.1093/carcin/13.9.1671.
[138]  Hoffmann, K.; Hermanns-Clausen, M.; Buhl, C.; Buchler, M.W.; Schemmer, P.; Mebs, D.; Kauferstein, S. A case of palytoxin poisoning due to contact with zoanthid corals through a skin injury. Toxicon 2008, 51, 1535–1537, doi:10.1016/j.toxicon.2008.03.009.
[139]  G?r?gh, T.; Bèress, L.; Quabius, E.S.; Ambrosch, P.; Hoffmann, M. Head and neck cancer cells and xenografts are very sensitive to palytoxin: Decrease of c-jun n-terminale kinase-3 expression enhances palytoxin toxicity. Mol. Cancer 2013, 12, 12, doi:10.1186/1476-4598-12-12.
[140]  Tosteson, M.T.; Halperin, J.A.; Kishi, Y.; Tosteson, D.C. Palytoxin induces an increase in the cation conductance of red cells. J. Gen. Physiol. 1991, 98, 969–985, doi:10.1085/jgp.98.5.969.
[141]  Tosteson, M.T.; Scriven, D.R.; Bharadwaj, A.K.; Kishi, Y.; Tosteson, D.C. Interaction of palytoxin with red cells: Structure-function studies. Toxicon 1995, 33, 799–807, doi:10.1016/0041-0101(95)00010-J.
[142]  Tosteson, M.T.; Thomas, J.; Arnadottir, J.; Tosteson, D.C. Effects of palytoxin on cation occlusion and phosphorylation of the (Na+,K+)-ATPase. J. Membr. Biol. 2003, 192, 181–189, doi:10.1007/s00232-002-1074-9.
[143]  Bonnard, C.; Lechner, J.F.; Gerwin, B.I.; Fujiki, H.; Harris, C.C. Effects of palytoxin or ouabain on growth and squamous differentiation of human bronchial epithelial cells in vitro. Carcinogenesis 1988, 9, 2245–2249, doi:10.1093/carcin/9.12.2245.
[144]  Rouzaire-Dubois, B.; Dubois, J.M. Characterization of palytoxin-induced channels in mouse neuroblastoma cells. Toxicon. 1990, 28, 1147–1158, doi:10.1016/0041-0101(90)90115-N.
[145]  Sagara, T.; Nishibori, N.; Itoh, M.; Morita, K.; Her, S. Palytoxin causes nonoxidative necrotic damage to PC12 cells in culture. J. Appl. Toxicol. 2013, 33, 120–124, doi:10.1002/jat.1728.
[146]  Bignami, G.S.; Senter, P.D.; Grothaus, P.G.; Fischer, K.J.; Humphreys, T.; Wallace, P.M. N-(4'-hydroxyphenylacetyl)palytoxin: A palytoxin prodrug that can be activated by a monoclonal antibody-penicillin G amidase conjugate. Cancer Res. 1992, 52, 5759–5764.
[147]  Vale, C.; Gómez-Limia, B.; Vieytes, M.R.; Botana, L.M. Mitogen-activated protein kinases regulate palytoxin-induced calcium influx and cytotoxicity in cultured neurons. Br. J. Pharmacol. 2007, 152, 256–266, doi:10.1038/sj.bjp.0707389.
[148]  Vale, C.; Alfonso, A.; Sunol, C.; Vieytes, M.R.; Botana, L.M. Modulation of calcium entry and glutamate release in cultured cerebellar granule cells by palytoxin. J. Neurosci. Res. 2006, 83, 1393–1406, doi:10.1002/jnr.20841.
[149]  Vale-Gonzalez, C.; Gomez-Limia, B.; Vieytes, M.R.; Botana, L.M. Effects of the marine phycotoxin palytoxin on neuronal pH in primary cultures of cerebellar granule cells. J. Neurosci. Res. 2007, 85, 90–98, doi:10.1002/jnr.21095.
[150]  Kerbrat, A.S.; Amzil, Z.; Pawlowiez, R.; Golubic, S.; Sibat, M.; Darius, H.T.; Chinain, M.; Laurent, D. First evidence of Palytoxin and 42-Hydroxy-palytoxin in the marine cyanobacterium Trichodesmium. Mar. Drugs 2011, 9, 543–560, doi:10.3390/md9040543.
[151]  Pelin, M.; Sosa, S.; Della Loggia, R.; Poli, M.; Tubaro, A.; Decorti, G.; Florio, C. The cytotoxic effect of palytoxin on Caco-2 cells hinders their use for in vitro absorption studies. Food Chem. Toxicol 2012, 50, 206–211, doi:10.1016/j.fct.2011.10.032.
[152]  Pettit, G.R.; Fujii, Y.; Hasler, J.A.; Schmidt, J.M. Isolation and characterization of palystatins A-D. J. Nat. Prod. 1982, 45, 272–276, doi:10.1021/np50021a007.
[153]  Giraldi, T.; Ferlan, I.; Romeo, D. Antitumor activity of equinatoxin. Chem. Biol. Interact. 1976, 13, 199–203, doi:10.1016/0009-2797(76)90073-9.
[154]  Batista, U.; Macek, P.; Sedmak, B. The cytotoxic and cytolytic activity of equinatoxin II from the sea anemone Actinia equina. Cell Biol. Int. Rep. 1990, 14, 1013–1024, doi:10.1016/0309-1651(90)90113-D.
[155]  Zorec, R.; Tester, M.; Macek, P.; Mason, W.T. Cytotoxicity of equinatoxin II from the sea anemone Actinia equina involves ion channel formation and an increase in intracellular calcium activity. J. Membr. Biol. 1990, 118, 243–249, doi:10.1007/BF01868608.
[156]  Batista, U.; Sentjurc, M. EPR study of the sea anemone cytolysin, equinatoxin II, cytotoxicity on V-79 cells. Cell Biol. Int. 1995, 19, 215–222, doi:10.1006/cbir.1995.1064.
[157]  Mariottini, G.L.; Robbiano, L.; Carli, A. Toxicity of Actinia equina (Cnidaria: Anthozoa) crude venom on cultured cells. Boll. Soc. Ital. Biol. Sper. 1998, 74, 103–110.
[158]  Potrich, C.; Tomazzolli, R.; Dalla Serra, M.; Anderluh, G.; Malovrh, P.; Ma?ek, P.; Menestrina, G.; Tejuca, M. Cytotoxic activity of a tumor protease-activated pore-forming toxin. Bioconjugate Chem. 2005, 16, 369–376, doi:10.1021/bc049873z.
[159]  Koblinski, J.E.; Ahram, M.; Sloane, B.F. Unraveling the role of proteases in cancer. Clin. Chim. Acta 2000, 291, 113–135, doi:10.1016/S0009-8981(99)00224-7.
[160]  Podgorski, I.; Sloane, B.F. Cathepsin B and its role(s) in cancer progression. Biochem. Soc. Symp. 2003, 70, 263–276.
[161]  Soletti, R.C.; de Faria, G.P.; Vernal, J.; Terenzi, H.; Anderluh, G.; Borges, H.L.; Moura-Neto, V.; Gabilan, N.H. Potentiation of anticancer-drug cytotoxicity by sea anemone pore-forming proteins in human glioblastoma cells. Anti-Cancer Drugs 2008, 19, 517–525, doi:10.1097/CAD.0b013e3282faa704.
[162]  Soletti, R.C.; Alves, T.; Vernal, J.; Terenzi, H.; Anderluh, G.; Borges, H.L.; Gabilan, N.H.; Moura-Neto, V. Inhibition of MAPK/ERK, PKC and CaMKII signaling blocks cytolysin-induced human glioma cell death. Anti-Cancer Res. 2010, 30, 1209–1215.
[163]  Kahn, S.A.; Biasoli, D.; Garcia, C.; Geraldo, L.H.; Pontes, B.; Sobrinho, M.; Frauches, A.C.; Rom?o, L.; Soletti, R.C.; Assun??o Fdos, S.; et al. Equinatoxin II potentiates temozolomide- and etoposide-induced glioblastoma cell death. Curr. Top. Med. Chem. 2012, 12, 2082–2093.
[164]  Mariottini, G.L.; Bussotti, S.; Carli, A. Cytotoxic effects produced on a continuous cell line by the nematocyst venom of Anemonia. sulcata (Cnidaria: Anthozoa). I. Cytotechnology 1993, 11, S158–S159.
[165]  Carli, A.; Mariottini, G.L.; Pane, L. Ecological and Medical Aspects of Jellyfish Poisoning. In Epidemiological Studies Related to the Environmental Quality Criteria for Bathing Waters, Shellfish-Growing Waters and Edible Marine Organisms; UNEP: Athens, Greece, 1995; pp. 1–21.
[166]  Carli, A.; Bussotti, S.; Mariottini, G.L.; Robbiano, L. Toxicity of jellyfish and sea-anemone venoms on cultured V79 cells. Toxicon 1996, 34, 496–500, doi:10.1016/0041-0101(95)00157-3.
[167]  Marino, A.; Valveri, V.; Muià, C.; Crupi, R.; Rizzo, G.; Musci, G.; La Spada, G. Cytotoxicity of the nematocyst venom from the sea anemone Aiptasia mutabilis. Comp. Biochem. Physiol. C 2004, 139, 295–301.
[168]  Mariottini, G.L.; Pane, L. Mediterranean jellyfish venoms: A review on Scyphomedusae. Mar. Drugs 2010, 8, 1122–1152, doi:10.3390/md8041122.
[169]  Fedorov, S.; Dyshlovoy, S.; Monastyrnaya, M.; Shubina, L.; Leychenko, E.; Kozlovskaya, E.; Jin, J.-O.; Kwak, J.-Y.; Bode, A.M.; Dong, Z.; et al. The anticancer effects of actinoporin RTX-A from the sea anemone Heteractis crispa (=Radianthus macrodactylus). Toxicon 2010, 55, 811–817, doi:10.1016/j.toxicon.2009.11.016.
[170]  Young, M.R.; Li, J.J.; Rincon, M.; Flavell, R.A.; Sathyanarayana, B.K.; Hunziker, R.; Colburn, N. Transgenic mice demonstrate AP-1 (activator protein-1) transactivation is required for tumor promotion. Proc. Natl. Acad. Sci. USA 1999, 96, 9827–9832, doi:10.1073/pnas.96.17.9827.
[171]  Amit, S.; Ben-Neriah, Y. NF-κB activation in cancer: A challenge for ubiquitination- and proteasome-based therapeutic approach. Semin. Cancer Biol. 2003, 13, 15–28, doi:10.1016/S1044-579X(02)00096-2.
[172]  Monroy-Estrada, H.I.; Chirino, Y.I.; Soria-Mercado, I.E.; Sánchez-Rodríguez, J. Toxins from the Caribbean sea anemone Bunodeopsis globulifera increase cisplatin-induced cytotoxicity of lung adenocarcinoma cells. J. Venom. Anim. Toxins 2013, 19, 12.
[173]  Neeman, I.; Calton, G.J.; Burnett, J.W. Cytotoxicity and dermonecrosis of sea nettle (Chrysaora quinquecirrha) venom. Toxicon 1980, 18, 55–63, doi:10.1016/0041-0101(80)90031-8.
[174]  Neeman, I.; Calton, G.J.; Burnett, J.W. An ultrastructural study of the cytotoxic effect of the venoms from the sea nettle (Chrysaora quinquecirrha) and Portuguese man-of-war (Physalia physalis) on cultured Chinese hamster ovary K-1 cells. Toxicon 1980, 18, 495–501, doi:10.1016/0041-0101(80)90060-4.
[175]  Cao, C.J.; Eldefrawi, M.E.; Eldefrawi, A.T.; Burnett, J.W.; Mioduszewski, R.J.; Menking, D.E.; Valdes, J.J. Toxicity of sea nettle toxin to human hepatocytes and the protective effects of phosphorylating and alkylating agents. Toxicon 1998, 36, 269–281, doi:10.1016/S0041-0101(97)00122-0.
[176]  Houck, H.E.; Lipsky, M.M.; Marzella, L.; Burnett, J.V. Toxicity of sea nettle (Chrysaora quinquecirrha) fishing tentacle nematocyst venom in cultured rat hepatocytes. Toxicon 1996, 34, 771–778, doi:10.1016/0041-0101(96)00004-9.
[177]  Helmholz, H.; Johnston, B.D.; Ruhnau, C.; Prange, A. Gill cell toxicity of northern boreal scyphomedusae Cyanea capillata and Aurelia aurita measured by an in vitro cell assay. Hydrobiologia 2010, 645, 223–234, doi:10.1007/s10750-010-0216-9.
[178]  Li, C.; Li, P.; Feng, J.; Li, R.; Yu, H. Cytotoxicity of the venom from the nematocysts of jellyfish Cyanea nozakii Kishinouye. Toxicol. Ind. Health 2012, 28, 186–192, doi:10.1177/0748233711410910.
[179]  Mariottini, G.L.; Giacco, E.; Pane, L. The Mauve Stinger Pelagia noctiluca (Forssk?l, 1775). Distribution, ecology, toxicity and epidemiology of stings. A review. Mar. Drugs 2008, 6, 496–513.
[180]  Mariottini, G.L.; Sottofattori, E.; Mazzei, M.; Robbiano, L.; Carli, A. Cytotoxicity of the venom of Pelagia noctiluca Forskal (Cnidaria: Scyphozoa). Toxicon 2002, 40, 695–698, doi:10.1016/S0041-0101(01)00262-8.
[181]  Ayed, Y.; Boussabbeh, M.; Zakhama, W.; Bouaziz, C.; Abid, S.; Hassen, B. Induction of cytotoxicity of Pelagia noctiluca venom causes reactive oxygen species generation, lipid peroxydation induction and DNA damage in human colon cancer cells. Lipids Health Dis. 2011, 10, 232, doi:10.1186/1476-511X-10-232.
[182]  Ayed, Y.; Chayma, B.; Hayla, A.; Abid, S.; Bacha, H. Is cell death induced by nematocysts extract of medusa Pelagia noctiluca related to oxidative stress? Environ. Toxicol. 2013, 28, 498–506, doi:10.1002/tox.20740.
[183]  Addad, S.; Exposito, J.-Y.; Faye, C.; Ricard-Blum, S.; Lethias, C. Isolation, characterization and biological evaluation of jellyfish collagen for use in biomedical applications. Mar. Drugs 2011, 9, 967–983, doi:10.3390/md9060967.
[184]  Ordu?a-Novoa, K.; Segura-Puertas, L.; Sánchez-Rodríguez, J.; Meléndez, A.; Nava-Ruíz, C.; Rembao, D.; Santamaría, A.; Galván-Arzate, S. Possible antitumoral effect of the crude venom of Cassiopea xamachana (Cnidaria: Scyphozoa) on tumors of the central nervous system induced by N-Ethyl-N-Nitrosourea (ENU) in rats. Proc. West. Pharmacol. Soc. 2003, 46, 85–87.
[185]  Lee, H.; Jung, E.-S.; Kang, C.; Yoon, W.D.; Kim, J.-S.; Kim, E. Scyphozoan jellyfish venom metalloproteinases and their role in the cytotoxicity. Toxicon 2011, 58, 277–284, doi:10.1016/j.toxicon.2011.06.007.
[186]  Burnett, J.W.; Ordonez, J.V.; Calton, G.J. Differential toxicity of Physalia physalis (Portuguese man-o’war) nematocysts separated by flow cytometry. Toxicon 1986, 24, 514–518, doi:10.1016/0041-0101(86)90085-1.
[187]  Edwards, L.P.; Whitter, E.; Hessinger, D.A. Apparent membrane pore formation by Portuguese man-of-war (Physalia physalis) venom in intact cultured cells. Toxicon 2002, 40, 1299–1305, doi:10.1016/S0041-0101(02)00138-1.
[188]  Diaz-Garcia, C.M.; Fuentes-Silva, D.; Sanchez-Soto, C.; Domínguez-Pérez, D.; García-Delgado, N.; Varela, C.; Mendoza-Hernández, G.; Rodriguez-Romero, A.; Castaneda, O.; Hiriart, M. Toxins from Physalia physalis (Cnidaria) raise the intracellular Ca2+ of beta-cells and promote insulin secretion. Curr. Med. Chem. 2012, 19, 5414–5423, doi:10.2174/092986712803833308.
[189]  Zhang, M.; Fishman, Y.; Sher, D.; Zlotkin, E. Hydralysin, a novel animal group-selective paralytic and cytolytic protein from a noncnidocystic origin in Hydra. Biochemistry 2003, 42, 8939–8944, doi:10.1021/bi0343929.
[190]  Sun, L.-K.; Yoshii, Y.; Hyodo, A.; Tsurushima, H.; Saito, A.; Harakuni, T.; Li, Y.-P.; Nozaki, M.; Morine, N. Apoptosis induced by box jellyfish (Chiropsalmus quadrigatus) toxin in glioma and vascular endothelial cell lines. Toxicon 2002, 40, 441–446, doi:10.1016/S0041-0101(01)00231-8.
[191]  Winter, K.L.; Isbister, G.K.; McGowan, S.; Konstantakopoulos, N.; Seymour, J.E.; Hodgson, W.C. A pharmacological and biochemical examination of the geographical variation of Chironex fleckeri venom. Toxicol. Lett. 2010, 192, 419–424, doi:10.1016/j.toxlet.2009.11.019.
[192]  Saggiomo, S.L.A.; Seymour, J.E. Cardiotoxic effects of venom fractions from the Australian box jellyfish Chironex fleckeri on human myocardiocytes. Toxicon 2012, 60, 391–395, doi:10.1016/j.toxicon.2012.03.025.
[193]  Proksch, P.; Edrada-Ebel, R.A.; Ebel, R. Drugs from the sea—Opportunities and obstacles. Mar. Drugs 2003, 1, 5–17, doi:10.3390/md101005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133