全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Toxins  2013 

Aptamers: A Promising Tool for Ochratoxin A Detection in Food Analysis

DOI: 10.3390/toxins5111988

Keywords: ochratoxin A, aptamer, purification, detection, analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

The contamination of food and feed by mycotoxins has become an increasingly serious problem. Mycotoxins represent a major risk to human and animal health, as well as economics. Herein, we focus on Ochratoxin A (OTA), which is one of the most common mycotoxins contaminating feed and foodstuffs. OTA is a secondary metabolite produced by various Aspergillus and Penicillium strains. Upon ingestion, OTA has a number of acute and chronic toxic effects. It is nephrotoxic, teratogenic, immunosuppressive, and carcinogenic (group 2B). As a consequence, some regulatory limits have been introduced on the levels of OTA in several commodities. The toxic nature of OTA demands highly sensitive and selective monitoring techniques to protect human and animal health. As alternative to traditional analytical techniques, biochemical methods for OTA analysis have attained great interest in the last few decades. They are mainly based on the integration of antibodies or aptamers as biorecognition elements in sensing platforms. However, aptamers have gained more attention in affinity-based assays because of their high affinity, specificity, stability, and their easy chemical synthesis. In this brief review, we present an overview of aptamer-based assays and their applications in OTA purification and detection, appeared in the literature in the last five years.

References

[1]  Meerdink, G.L. Mycotoxins. Clin. Tech. Equine Pract. 2002, 1, 89–93, doi:10.1053/ctep.2002.34240.
[2]  Fernández-Cruz, M.L.; Mansilla, M.L.; Tadeo, J.L. Mycotoxins in fruits and their processed products: Analysis, occurrence and health implications. J. Adv. Res. 2010, 1, 113–122, doi:10.1016/j.jare.2010.03.002.
[3]  Van der Merwe, K.S.; Steyn, P.S.; Fourie, L.; DeScott, B.; Theron, J.J. Ochratoxin A, a toxic metabolite produced by aspergillus ochraceus. Nature 1965, 205, 1112–1113, doi:10.1038/2051112a0.
[4]  International Agency for Research on Cancer (IARC). Ochratoxin A. In Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins; World Health Organization: Geneva, Switzerland, 1993.
[5]  Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 1995; pp. 489–521.
[6]  Boudra, H.; Le Bars, P.; Le Bars, J. Thermostability of ochratoxin a in wheat under two moisture conditions. Appl. Environ. Microbiol. 1995, 61, 1156–1158.
[7]  Turner, N.W.; Subrahmanyam, S.; Piletsky, S.A. Analytical methods for determination of mycotoxins: A review. Anal. Chim. Acta 2009, 632, 168–180, doi:10.1016/j.aca.2008.11.010.
[8]  Van Dorst, B.; Mehta, J.; Bekaert, K.; Rouah-Martin, E.; De Coen, W.; Dubruel, P.; Blust, R.; Robbens, J. Recent advances in recognition elements of food and environmental biosensors: A review. Biosens. Bioelectron. 2010, 26, 1178–1194, doi:10.1016/j.bios.2010.07.033.
[9]  Radi, A.-E.; Mu?oz-Berbel, X.; Cortina-Puig, M.; Marty, J.-L. An electrochemical immunosensor for ochratoxin a based on immobilization of antibodies on diazonium-functionalized gold electrode. Electrochim. Acta 2009, 54, 2180–2184, doi:10.1016/j.electacta.2008.10.013.
[10]  Prieto-Simon, B.; Campas, M.; Marty, J.L.; Noguer, T. Novel highly-performing immunosensor-based strategy for ochratoxin a detection in wine samples. Biosens. Bioelectron. 2008, 23, 995–1002, doi:10.1016/j.bios.2007.10.002.
[11]  Lates, V.; Yang, C.; Popescu, I.; Marty, J.-L. Displacement immunoassay for the detection of ochratoxin a using ochratoxin b modified glass beads. Anal. Bioanal. Chem. 2012, 402, 2861–2870, doi:10.1007/s00216-012-5721-4.
[12]  Remiro, R.; Ibanez-Vea, M.; Gonzalez-Penas, E.; Lizarraga, E. Validation of a liquid chromatography method for the simultaneous quantification of ochratoxin a and its analogues in red wines. J. Chromatogr. A 2010, 1217, 8249–8256.
[13]  Zhou, S.; Lai, E.C.; Miller, J.D. Analysis of wheat extracts for ochratoxinA by molecularly imprinted solid-phase extraction and pulsed elution. Anal. Bioanal. Chem. 2004, 378, 1903–1906, doi:10.1007/s00216-003-2409-9.
[14]  Cruz-Aguado, J.A.; Penner, G. Determination of ochratoxin a with a DNA aptamer. J. Agric. Food Chem. 2008, 56, 10456–10461, doi:10.1021/jf801957h.
[15]  Duarte, S.C.; Pena, A.; Lino, C.M. A review on ochratoxin A occurrence and effects of processing of cereal and cereal derived food products. Food microbiol. 2010, 27, 187–198, doi:10.1016/j.fm.2009.11.016.
[16]  Ozden, S.; Akdeniz, A.S.; Alpertunga, B. Occurrence of ochratoxin A in cereal-derived food products commonly consumed in turkey. Food Control 2012, 25, 69–74, doi:10.1016/j.foodcont.2011.10.015.
[17]  Araguás, C.; González-Pe?as, E.; López de Cerain, A. Study on ochratoxin a in cereal-derived products from spain. Food Chem. 2005, 92, 459–464, doi:10.1016/j.foodchem.2004.08.012.
[18]  Tozlovanu, M.; Pfohl-Leszkowicz, A. Ochratoxin a in roasted coffee from french supermarkets and transfer in coffee beverages: Comparison of analysis methods. Toxins 2010, 2, 1928–1942, doi:10.3390/toxins2081928.
[19]  Caba?es, F.J.; Accensi, F.; Bragulat, M.R.; Abarca, M.L.; Castellá, G.; Minguez, S.; Pons, A. What is the source of ochratoxin a in wine? Int. J. Food Microbiol. 2002, 79, 213–215, doi:10.1016/S0168-1605(02)00087-9.
[20]  Mateo, R.; Medina, á.; Mateo, E.M.; Mateo, F.; Jiménez, M. An overview of ochratoxin A in beer and wine. Int. J. Food Microbiol. 2007, 119, 79–83, doi:10.1016/j.ijfoodmicro.2007.07.029.
[21]  Battilani, P.; Magan, N.; Logrieco, A. European research on ochratoxin a in grapes and wine. Int. J. Food Microbiol. 2006, 111 (Suppl. 1), S2–S4, doi:10.1016/j.ijfoodmicro.2006.02.007.
[22]  Mantle, P.G.; Chow, A.M. Ochratoxin formation in aspergillus ochraceus with particular reference to spoilage of coffee. Int. J. Food Microbiol. 2000, 56, 105–109, doi:10.1016/S0168-1605(00)00278-6.
[23]  Copetti, M.V.; Iamanaka, B.T.; Nester, M.A.; Efraim, P.; Taniwaki, M.H. Occurrence of ochratoxin A in cocoa by-products and determination of its reduction during chocolate manufacture. Food Chem. 2013, 136, 100–104, doi:10.1016/j.foodchem.2012.07.093.
[24]  Bircan, C. Incidence of ochratoxin A in dried fruits and co-occurrence with aflatoxins in dried figs. Food Chem. Toxicol. 2009, 47, 1996–2001, doi:10.1016/j.fct.2009.05.008.
[25]  Ozbey, F.; Kabak, B. Natural co-occurrence of aflatoxins and ochratoxin A in spices. Food Control 2012, 28, 354–361, doi:10.1016/j.foodcont.2012.05.039.
[26]  Duarte, S.C.; Lino, C.M.; Pena, A. Ochratoxin A in feed of food-producing animals: An undesirable mycotoxin with health and performance effects. Vet. Microbiol. 2011, 154, 1–13, doi:10.1016/j.vetmic.2011.05.006.
[27]  M?rtlbauer, E.; Usleber, E.; Dietrich, R.; Schneider, E. Ochratoxin A in human blood serum—Retrospective long-term data. Mycotox. Res. 2009, 25, 175–186, doi:10.1007/s12550-009-0025-z.
[28]  Biasucci, G.; Calabrese, G.; Di Giuseppe, R.; Carrara, G.; Colombo, F.; Mandelli, B.; Maj, M.; Bertuzzi, T.; Pietri, A.; Rossi, F. The presence of ochratoxin A in cord serum and in human milk and its correspondence with maternal dietary habits. Eur. J. Nutr. 2011, 50, 211–218, doi:10.1007/s00394-010-0130-y.
[29]  Pfohl-Leszkowicz, A.; Manderville, R.A. Ochratoxin A: An overview on toxicity and carcinogenicity in animals and humans. Mol. Nutr. Food Res. 2007, 51, 61–99, doi:10.1002/mnfr.200600137.
[30]  Castegnaro, M.; Canadas, D.; Vrabcheva, T.; Petkova-Bocharova, T.; Chernozemsky, I.N.; Pfohl-Leszkowicz, A. Balkan endemic nephropathy: Role of ochratoxins A through biomarkers. Mol. Nutr. Food Res. 2006, 50, 519–529, doi:10.1002/mnfr.200500182.
[31]  Pfohl-Leszkowicz, A.; Tozlovanu, M.; Manderville, R.; Peraica, M.; Castegnaro, M.; Stefanovic, V. New molecular and field evidences for the implication of mycotoxins but not aristolochic acid in human nephropathy and urinary tract tumor. Mol. Nutr. Food Res. 2007, 51, 1131–1146.
[32]  Khan, M.A.; Asrani, R.K.; Iqbal, A.; Patil, R.D.; Rottinghaus, G.E.; Ledoux, D.R. Fumonisin b1 and ochratoxin A nephrotoxicity in japanese quail: An ultrastructural assessment. Comp. Clin. Pathol. 2013, 22, 835–843, doi:10.1007/s00580-012-1486-6.
[33]  Reddy, L.; Bhoola, K. Ochratoxins—Food contaminants: Impact on human health. Toxins 2010, 2, 771–779, doi:10.3390/toxins2040771.
[34]  Mally, A.; Hard, G.C.; Dekant, W. Ochratoxin A as a potential etiologic factor in endemic nephropathy: Lessons from toxicity studies in rats. Food Chem. Toxicol. 2007, 45, 2254–2260, doi:10.1016/j.fct.2007.05.021.
[35]  Pfohl-Leszkowicz, A.; Petkova-Bocharova, T.; Chernozemsky, I.N.; Castegnaro, M. Balkan endemic nephropathy and associated urinary tract tumours: A review on aetiological causes and the potential role of mycotoxins. Food Addit. Contam. 2002, 19, 282–302, doi:10.1080/02652030110079815.
[36]  Pfohl-Leszkowicz, A.; Manderville, R.A. An update on direct genotoxicity as a molecular mechanism of ochratoxin a carcinogenicity. Chem. Res. Toxicol. 2012, 25, 252–262, doi:10.1021/tx200430f.
[37]  Al-Anati, L.; Petzinger, E. Immunotoxic activity of ochratoxin A. J. Vet. Pharmacol. Ther. 2006, 29, 79–90, doi:10.1111/j.1365-2885.2006.00718.x.
[38]  Froquet, R.; Le Drean, G.; Parent-Massin, D. Effect of ochratoxin A on human haematopoietic progenitors proliferation and differentiation: An in vitro study. Hum. Exp. Toxicol. 2003, 22, 393–400.
[39]  O’Brien, E.; Prietz, A.; Dietrich, D.R. Investigation of the teratogenic potential of ochratoxin A and B using the fetax system. Birth Defects Res. Part B Dev. Reprod. Toxicol. 2005, 74, 417–423, doi:10.1002/bdrb.20054.
[40]  Schwartz, G. Hypothesis: Does ochratoxin A cause testicular cancer? Cancer Causes Control 2002, 13, 91–100, doi:10.1023/A:1013973715289.
[41]  Wangikar, P.B.; Dwivedi, P.; Sinha, N. Effect in rats of simultaneous prenatal exposure to ochratoxin A and aflatoxin B1. I. Maternal toxicity and fetal malformations. Birth Defects Res. Part B Dev. Reprod. Toxicol. 2004, 71, 343–351, doi:10.1002/bdrb.20021.
[42]  Patil, R.D.; Dwivedi, P.; Sharma, A.K. Critical period and minimum single oral dose of ochratoxin A for inducing developmental toxicity in pregnant wistar rats. Reprod. Toxicol. 2006, 22, 679–687, doi:10.1016/j.reprotox.2006.04.022.
[43]  Jennings-Gee, J.E.; Tozlovanu, M.; Manderville, R.; Miller, M.S.; Pfohl-Leszkowicz, A.; Schwartz, G.G. Ochratoxin A: In utero exposure in mice induces adducts in testicular DNA. Toxins 2010, 2, 1428–1444, doi:10.3390/toxins2061428.
[44]  Commission of the European Communities. Commission Recommendation (EC) No 594/2012 of 5 July 2012 emending regulation 1881/2006 as regards the maximum levels of the contaminants Ochratoxin A, non dioxin-like pcbs and melamine in foodstuffs. Off. J. Eur. Commun. 2012, L176, 43–45.
[45]  Commission of the European Communities. Commission Recommendation (EC) No 576/2006 of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Off. J. Eur. Commun. 2006, L229, 7–9.
[46]  Kuiper-Goodman, T.; Hilts, C.; Billiard, S.M.; Kiparissis, Y.; Richard, I.D.K.; Hayward, S. Health risk assessment of ochratoxin A for all age-sex strata in a market economy. Food Addit. Contam. Part A 2009, 27, 212–240.
[47]  Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822, doi:10.1038/346818a0.
[48]  Hermann, T.; Patel, D.J. Adaptive recognition by nucleic acid aptamers. Science 2000, 287, 820–825, doi:10.1126/science.287.5454.820.
[49]  Tombelli, S.; Minunni, M.; Mascini, M. Analytical applications of aptamers. Biosens. Bioelectron. 2005, 20, 2424–2434, doi:10.1016/j.bios.2004.11.006.
[50]  Toulmé, J.-J.; Da Rocha, S.; Dausse, E.; Azéma, L.; Lebars, I.; Moreau, S. Les aptamères: Du concept à l’outil. Méd. Nucl. 2007, 31, 478–484.
[51]  Cho, M.; Xiao, Y.; Nie, J.; Stewart, R.; Csordas, A.T.; Oh, S.S.; Thomson, J.A.; Soh, H.T. Quantitative selection of DNA aptamers through microfluidic selection and high-throughput sequencing. Proc. Natl. Acad. Sci. 2010, 107, 15373–15378.
[52]  Stoltenburg, R.; Reinemann, C.; Strehlitz, B. Selex—A (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol. Eng. 2007, 24, 381–403, doi:10.1016/j.bioeng.2007.06.001.
[53]  Barthelmebs, L.; Jonca, J.; Hayat, A.; Prieto-Simon, B.; Marty, J.-L. Enzyme-linked aptamer assays (elaas), based on a competition format for a rapid and sensitive detection of ochratoxin A in wine. Food Control 2011, 22, 737–743, doi:10.1016/j.foodcont.2010.11.005.
[54]  Moises, S.S.; Sch?ferling, M. Toxin immunosensors and sensor arrays for food quality control. Bioanal. Rev. 2009, 1, 73–104, doi:10.1007/s12566-009-0006-x.
[55]  Meulenberg, E.P. Immunochemical methods for ochratoxin A detection: A review. Toxins 2012, 4, 244–266, doi:10.3390/toxins4040244.
[56]  Jayasena, S.D. Aptamers: An emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 1999, 45, 1628–1650.
[57]  Cruz-Aguado, J.A.; Penner, G. Fluorescence polarization based displacement assay for the determination of small molecules with aptamers. Anal. Chem. 2008, 80, 8853–8855, doi:10.1021/ac8017058.
[58]  Yang, C.; Wang, Y.; Marty, J.L.; Yang, X.R. Aptamer-based colorimetric biosensing of ochratoxin A using unmodified gold nanoparticles indicator. Biosens. Bioelectron. 2011, 26, 2724–2727, doi:10.1016/j.bios.2010.09.032.
[59]  Geng, X.; Zhang, D.; Wang, H.; Zhao, Q. Screening interaction between ochratoxin A and aptamers by fluorescence anisotropy approach. Anal. Bioanal. Chem. 2013, 405, 2443–2449, doi:10.1007/s00216-013-6736-1.
[60]  Senyuva, H.Z.; Gilbert, J. Immunoaffinity column clean-up techniques in food analysis: A review. J. Chromatogr. B Anal Technol. Biomed. Life Sci. 2010, 878, 115–132, doi:10.1016/j.jchromb.2009.05.042.
[61]  Zhao, Q.; Wu, M.; Le, X.C.; Li, X.-F. Applications of aptamer affinity chromatography. TrAC Trends Anal. Chem. 2012, 41, 46–57, doi:10.1016/j.trac.2012.08.005.
[62]  De Girolamo, A.; McKeague, M.; Miller, J.D.; DeRosa, M.C.; Visconti, A. Determination of ochratoxin A in wheat after clean-up through a DNA aptamer-based solid phase extraction column. Food Chem. 2011, 127, 1378–1384, doi:10.1016/j.foodchem.2011.01.107.
[63]  De Girolamo, A.; Le, L.; Penner, G.; Schena, R.; Visconti, A. Analytical performances of a DNA-ligand system using time-resolved fluorescence for the determination of ochratoxin A in wheat. Anal. Bioanal. Chem. 2012, 403, 2627–2634, doi:10.1007/s00216-012-6076-6.
[64]  Wu, X.; Hu, J.; Zhu, B.; Lu, L.; Huang, X.; Pang, D. Aptamer-targeted magnetic nanospheres as a solid-phase extraction sorbent for determination of ochratoxin A in food samples. J. Chromatogr. A 2011, 1218, 7341–7346, doi:10.1016/j.chroma.2011.08.045.
[65]  Chapuis-Hugon, F.; Du Boisbaudry, A.; Madru, B.; Pichon, V. New extraction sorbent based on aptamers for the determination of ochratoxin A in red wine. Anal. Bioanal. Chem. 2011, 400, 1199–1207, doi:10.1007/s00216-010-4574-y.
[66]  Rhouati, A.; Paniel, N.; Meraihi, Z.; Marty, J.-L. Development of an oligosorbent for detection of ochratoxin A. Food Control 2011, 22, 1790–1796, doi:10.1016/j.foodcont.2011.04.021.
[67]  Song, S.; Wang, L.; Li, J.; Fan, C.; Zhao, J. Aptamer-based biosensors. TrAC Trends Anal. Chem. 2008, 27, 108–117, doi:10.1016/j.trac.2007.12.004.
[68]  Yang, C.; Lates, V.; Prieto-Simon, B.; Marty, J.L.; Yang, X. Aptamer-dnazyme hairpins for biosensing of ochratoxin A. Biosens. Bioelectron. 2012, 32, 208–212, doi:10.1016/j.bios.2011.12.011.
[69]  Yang, C.; Lates, V.; Prieto-Simón, B.; Marty, J.-L.; Yang, X. Rapid high-throughput analysis of ochratoxin A by the self-assembly of dnazyme-aptamer conjugates in wine. Talanta 2013, 116, 520–526, doi:10.1016/j.talanta.2013.07.011.
[70]  Ricci, F.; Adornetto, G.; Palleschi, G. A review of experimental aspects of electrochemical immunosensors. Electrochim. Acta 2012, 84, 74–83, doi:10.1016/j.electacta.2012.06.033.
[71]  Nutiu, R.; Li, Y. Aptamers with fluorescence-signaling properties. Methods 2005, 37, 16–25, doi:10.1016/j.ymeth.2005.07.001.
[72]  Wang, L.; Chen, W.; Ma, W.; Liu, L.; Ma, W.; Zhao, Y.; Zhu, Y.; Xu, L.; Kuang, H.; Xu, C. Fluorescent strip sensor for rapid determination of toxins. Chem. Commun. 2011, 47, 1574.
[73]  Sheng, L.; Ren, J.; Miao, Y.; Wang, J.; Wang, E. Pvp-coated graphene oxide for selective determination of ochratoxin A via quenching fluorescence of free aptamer. Biosens bioelectron. 2011, 26, 3494–3499, doi:10.1016/j.bios.2011.01.032.
[74]  Guo, Z.; Ren, J.; Wang, J.; Wang, E. Single-walled carbon nanotubes based quenching of free fam-aptamer for selective determination of ochratoxin A. Talanta 2011, 85, 2517–2521, doi:10.1016/j.talanta.2011.08.015.
[75]  Duan, N.; Wu, S.-J.; Wang, Z.-P. An aptamer-based fluorescence assay for ochratoxin A. Chin. J. Anal. Chem. 2011, 39, 300–304, doi:10.1016/S1872-2040(10)60423-9.
[76]  Chen, J.; Fang, Z.; Liu, J.; Zeng, L. A simple and rapid biosensor for ochratoxin A based on a structure-switching signaling aptamer. Food Control 2012, 25, 555–560, doi:10.1016/j.foodcont.2011.11.039.
[77]  Zhang, J.; Zhang, X.; Yang, G.; Chen, J.; Wang, S. A signal-on fluorescent aptasensor based on Tb3+ and structure-switching aptamer for label-free detection of ochratoxin A in wheat. Biosens. Bioelectron. 2013, 41, 704–709, doi:10.1016/j.bios.2012.09.053.
[78]  Zhao, Q.; Geng, X.; Wang, H. Fluorescent sensing ochratoxin A with single fluorophore-labeled aptamer. Anal. Bioanal. Chem. 2013, 405, 6281–6286, doi:10.1007/s00216-013-7047-2.
[79]  Ma, W.; Yin, H.; Xu, L.; Xu, Z.; Kuang, H.; Wang, L.; Xu, C. Femtogram ultrasensitive aptasensor for the detection of ochratoxin A. Biosens. Bioelectron. 2013, 42, 545–549, doi:10.1016/j.bios.2012.11.024.
[80]  Wang, Z.; Duan, N.; Hun, X.; Wu, S. Electrochemiluminescent aptamer biosensor for the determination of ochratoxin A at a gold-nanoparticles-modified gold electrode using N-(aminobutyl)-N-ethylisoluminol as a luminescent label. Anal. Bioanal. Chem. 2010, 398, 2125–2132, doi:10.1007/s00216-010-4146-1.
[81]  Wu, S.; Duan, N.; Wang, Z.; Wang, H. Aptamer-functionalized magnetic nanoparticle-based bioassay for the detection of ochratoxin A using upconversion nanoparticles as labels. Analyst 2011, 136, 2306–2314, doi:10.1039/c0an00735h.
[82]  Hun, X.; Liu, F.; Mei, Z.; Ma, L.; Wang, Z.; Luo, X. Signal amplified strategy based on target-induced strand release coupling cleavage of nicking endonuclease for the ultrasensitive detection of ochratoxin A. Biosens. Bioelectron. 2013, 39, 145–151, doi:10.1016/j.bios.2012.07.005.
[83]  Vidal, J.C.; Bonel, L.; Ezquerra, A.; Hernandez, S.; Bertolin, J.R.; Cubel, C.; Castillo, J.R. Electrochemical affinity biosensors for detection of mycotoxins: A review. Biosens. Bioelectron. 2013, 49C, 146–158.
[84]  Bonel, L.; Vidal, J.C.; Duato, P.; Castillo, J.R. An electrochemical competitive biosensor for ochratoxin A based on a DNA biotinylated aptamer. Biosens. Bioelectron. 2011, 26, 3254–3259, doi:10.1016/j.bios.2010.12.036.
[85]  Barthelmebs, L.; Hayat, A.; Limiadi, A.W.; Marty, J.-L.; Noguer, T. Electrochemical DNA aptamer-based biosensor for ota detection, using superparamagnetic nanoparticles. Sens. Actuators B Chem. 2011, 156, 932–937, doi:10.1016/j.snb.2011.03.008.
[86]  Rhouati, A.; Hayat, A.; Hernandez, D.B.; Meraihi, Z.; Munoz, R.; Marty, J.-L. Development of an automated flow-based electrochemical aptasensor for on-line detection of ochratoxin A. Sens. Actuators B Chem. 2013, 176, 1160–1166, doi:10.1016/j.snb.2012.09.111.
[87]  Kuang, H.; Chen, W.; Xu, D.; Xu, L.; Zhu, Y.; Liu, L.; Chu, H.; Peng, C.; Xu, C.; Zhu, S. Fabricated aptamer-based electrochemical “signal-off” sensor of ochratoxin A. Biosens. Bioelectron. 2010, 26, 710–716, doi:10.1016/j.bios.2010.06.058.
[88]  Wu, J.; Chu, H.; Mei, Z.; Deng, Y.; Xue, F.; Zheng, L.; Chen, W. Ultrasensitive one-step rapid detection of ochratoxin A by the folding-based electrochemical aptasensor. Anal. Chim. Acta 2012, 753, 27–31, doi:10.1016/j.aca.2012.09.036.
[89]  Prabhakar, N.; Matharu, Z.; Malhotra, B.D. Polyaniline langmuir-blodgett film based aptasensor for ochratoxin A detection. Biosens. Bioelectron. 2011, 26, 4006–4011, doi:10.1016/j.bios.2011.03.014.
[90]  Castillo, G.; Lamberti, I.; Mosiello, L.; Hianik, T. Impedimetric DNA aptasensor for sensitive detection of ochratoxin A in food. Electroanalysis 2012, 24, 512–520, doi:10.1002/elan.201100485.
[91]  Tong, P.; Zhang, L.; Xu, J.J.; Chen, H.Y. Simply amplified electrochemical aptasensor of ochratoxin A based on exonuclease-catalyzed target recycling. Biosens. Bioelectron. 2011, 29, 97–101, doi:10.1016/j.bios.2011.07.075.
[92]  Tong, P.; Zhao, W.W.; Zhang, L.; Xu, J.J.; Chen, H.Y. Double-probe signal enhancing strategy for toxin aptasensing based on rolling circle amplification. Biosens. Bioelectron. 2012, 33, 146–151, doi:10.1016/j.bios.2011.12.042.
[93]  Hayat, A.; Sassolas, A.; Marty, J.-L.; Radi, A.-E. Highly sensitive ochratoxin A impedimetric aptasensor based on the immobilization of azido-aptamer onto electrografted binary film via click chemistry. Talanta 2013, 103, 14–19, doi:10.1016/j.talanta.2012.09.048.
[94]  Hayat, A.; Andreescu, S.; Marty, J.L. Design of peg-aptamer two piece macromolecules as convenient and integrated sensing platform: Application to the label free detection of small size molecules. Biosens. Bioelectron. 2013, 45, 168–173, doi:10.1016/j.bios.2013.01.059.
[95]  Hayat, A.; Haider, W.; Rolland, M.; Marty, J.L. Electrochemical grafting of long spacer arms of hexamethyldiamine on a screen printed carbon electrode surface: Application in target induced ochratoxin A electrochemical aptasensor. Analyst 2013, 138, 2951–2957, doi:10.1039/c3an00158j.
[96]  McKeague, M.; Bradley, C.R.; De Girolamo, A.; Visconti, A.; Miller, J.D.; Derosa, M.C. Screening and initial binding assessment of fumonisin B(1) aptamers. Int. J. Mol. Sci. 2010, 11, 4864–4881, doi:10.3390/ijms11124864.
[97]  Wu, S.; Duan, N.; Li, X.; Tan, G.; Ma, X.; Xia, Y.; Wang, Z.; Wang, H. Homogenous detection of fumonisin B1 with a molecular beacon based on fluorescence resonance energy transfer between nayf4: Yb, ho upconversion nanoparticles and gold nanoparticles. Talanta 2013, 116, 611–618, doi:10.1016/j.talanta.2013.07.016.
[98]  Wu, S.; Duan, N.; Ma, X.; Xia, Y.; Wang, H.; Wang, Z.; Zhang, Q. Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Anal. Chem. 2012, 84, 6263–6270, doi:10.1021/ac301534w.
[99]  Shim, W.-B.; Mun, H.; Joung, H.-A.; Ofori, J.A.; Chung, D.-H.; Kim, M.-G. Chemiluminescence competitive aptamer assay for the detection of aflatoxin B1 in corn samples. Food Control 2014, 36, 30–35, doi:10.1016/j.foodcont.2013.07.042.
[100]  Nguyen, B.H.; Tran, L.D.; Do, Q.P.; Nguyen, H.L.; Tran, N.H.; Nguyen, P.X. Label-free detection of aflatoxin M1 with electrochemical Fe3O4/polyaniline-based aptasensor. Mat. Sci. Eng. C Mat. Biol. Appl. 2013, 33, 2229–2234, doi:10.1016/j.msec.2013.01.044.
[101]  Chen, X.; Huang, Y.; Duan, N.; Wu, S.; Ma, X.; Xia, Y.; Zhu, C.; Jiang, Y.; Wang, Z. Selection and identification of ssDNA aptamers recognizing zearalenone. Anal. Bioanal. Chem. 2013, 405, 6573–6581, doi:10.1007/s00216-013-7085-9.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133