Ochratoxin A (OTA) is a nephrotoxic mycotoxin with carcinogenic properties. Its presence was detected in various foodstuffs all over the world but with significantly higher frequency and concentrations in areas with endemic nephropathy (EN). Even though food is often contaminated with more than one mycotoxin, earlier studies focused on the occurrence and toxicology of only OTA. Only a limited number of surveys showed that OTA co-occurs in food with mycotoxins (citrinin-CIT, penicilic acid, fumonisin B 1-FB 1, aflatoxins-AF) which exert nephrotoxic, carcinogenic or carcinogen-promoting activity. This review summarises the findings on OTA and its co-occurrence with the mentioned mycotoxins in food as well as experimental data on their combined toxicity. Most of the tested mycotoxin mixtures involving OTA produced additive or synergistic effects in experimental models suggesting that these combinations represent a significant health hazard. Special attention should be given to mixtures that include carcinogenic and cancer-promoting mycotoxins.
References
[1]
Commission regulation (EC) no. 1881/2006 of 19 December 2006 on setting maximum levels for certain contaminants in foodstuffs amended by Commission regulations no. 1126/2007 of 28 September 2007, no. 105/2010 of 5 February 2010 and no. 165/2010 of 26 February 2010. pp. 1–26. Available online: http://www.eur-lex.europa.eu (accessed on 29 September 2013).
[2]
O’Brien, E.; Heussner, A.H.; Dietrich, D.R. Species-, sex-, and cell type-specific effects of ochratoxin A and B. Toxicol. Sci. 2001, 63, 256–264, doi:10.1093/toxsci/63.2.256.
[3]
International Agency for Research on Cancer (IARC). Ochratoxin A. In Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins. IARC Monogr. Eval. Carcinog. Risks Hum. 1993, 56, 489–521.
[4]
Duarte, S.C.; Pena, A.; Lino, C.M. A review on ochratoxin A occurrence and effects of processing of cereal and cereal derived food products. Food Microbiol. 2010, 27, 187–198, doi:10.1016/j.fm.2009.11.016.
[5]
Peraica, M.; Flajs, D.; Domijan, A.M.; Ivi?, D.; Cvjetkovi?, B. Ochratoxin A contamination of food from Croatia. Toxins 2010, 2, 2098–2105.
[6]
Peraica, M.; Domijan, A.M.; Mileti?-Medved, M.; Fuchs, R. The involvement of mycotoxins in the development of endemic nephropathy. Wien. Klin. Wochenschr. 2008, 120, 402–407, doi:10.1007/s00508-008-0981-x.
[7]
Pfohl-Leszkowicz, A.; Tozlovanu, M.; Manderville, R.A.; Peraica, M.; Castegnaro, M.; Stefanovic, V. New molecular and field evidences for the implication of mycotoxins but not aristolochic acid in human nephropathy and urinary tract tumor. Mol. Nutr. Food Res. 2007, 51, 131–146.
[8]
Pfohl-Leszkowicz, A. Ochratoxin A and aristolochic acid in the nephropathies and associated urothelial tract tumours development. Arh. Hig. Rada Toksikol. 2009, 60, 465–483.
[9]
Reddy, L.; Bhoola, K. Ochratoxins-food contaminants: Impact on human health. Toxins 2010, 2, 771–779, doi:10.3390/toxins2040771.
[10]
Domijan, A.M.; Peraica, M.; Cvjetkovi?, B.; Tur?in, S.; Jurjevi?, ?.; Cvjetkovi?, B. Mold contamination and co-occurrence of mycotoxins in corn grain in Croatia. Acta Pharm. 2005, 55, 349–356.
[11]
?egvi? Klari?, M.; Cvetni?, Z.; Pepeljnjak, S.; Kosalec, I. Co-occurrence of aflatoxins, ochratoxin A, fumonisins, and zearalenone in cereals and feed, determined by competitive direct enzyme-linked immunosorbent assay and thin-layer chromatography. Arh. Hig. Rada Toksikol. 2009, 60, 427–434.
[12]
Stoev, S.D.; Dutton, M.; Njobeh, P.; Mosonik, J.; Steenkamp, P. Mycotoxic nephropathy in Bulgarian pigs and chickens: complex aetiology and similarity to Balkan endemic nephropathy. Food Addit. Contam. A 2010, 27, 72–88, doi:10.1080/02652030903207227.
[13]
Caba?es, F.J.; Accensi, F.; Bragulat, M.R.; Abarca, M.L.; Castellá, G.; Minguez, S.; Pons, A. What is the source of ochratoxin A in wine? Int. J. Food Microbiol. 2002, 79, 213–215.
[14]
Joint FAO/WHO Expert Committee on Food Additives (JECFA). Safety Evaluation of Certain Food Additives and Contaminants; WHO Food Additives Series 59; WHO: Geneva, Switzerland, 2008.
[15]
Paterson, R.R.M.; Lima, N. How will climate change affect mycotoxins in food? Food Res. Int. 2010, 43, 1902–1914, doi:10.1016/j.foodres.2009.07.010.
[16]
Bragulat, M.R.; Martínez, E.; Castellá, G.; Caba?es, F.J. Ochratoxin A and citrinin producing species of the genus Penicillium from feedstuffs. Int. J. Food Microbiol. 2008, 126, 43–48.
[17]
Frisvad, J.C.; Frank, J.M.; Houbraken, J.A.M.P.; Kuijpers, A.F.A.; Samson, R.A. New ochratoxin A producing species of Aspergillus section. Circumdati. Stud. Mycol. 2004, 50, 23–43.
[18]
Stoev, S.D.; Hald, B.; Mantle, P. Porcine nephropathy in Bulgaria: A progressive syndrome of complex of uncertain (mycotoxin) etiology. Vet. Res. 1998, 142, 190–194.
[19]
Frisvad, J.C.; Smedsgaard, J.; Samson, R.A.; Larsen, T.O.; Thrane, U. Fumonisin B2 production by Aspergillus niger. J. Agr. Food Chem. 2007, 55, 9727–9732, doi:10.1021/jf0718906.
[20]
Frisvad, J.C.; Larsen, T.O.; Thrane, U.; Meijer, M.; Varga, J.; Samson, R.A.; Nielsen, K.F. Fumonisin and ochratoxin production in industrial Aspergillus niger strains. PloS One 2011, 6, 1–6.
[21]
Susca, A.; Proctor, R.H.; Mule, G.; Stea, G.; Ritieni, A.; Logrieco, A.; Moretti, A. Correlation of mycotoxin fumonisin B2 production and presence of the fumonisin biosynthetic gene fum8 in Aspergillus niger from grape. J. Agric. Food Chem. 2010, 58, 9266–9272.
[22]
Paterson, R.R.M.; Lima, N. Further mycotoxin effects from climate change. Food Res. Int. 2011, 44, 2555–2566.
[23]
Soares, C.; Calado, T.; Venancio, A. Mycotoxin production by Aspergillus niger aggregate strains isolated from harvested maize in three Portuguese regions. Rev. Iberoam. Micol. 2013, 30, 9–13, doi:10.1016/j.riam.2012.05.002.
[24]
Pepeljnjak, S.; ?egvi? Klari?, M. ?Suspects? in etiology of endemic nephropathy: Aristolochic acid versus mycotoxins. Toxins 2010, 2, 1414–1427.
[25]
?egvi? Klari?, M. Adverse effects of combined mycotoxins. Arh. Hig. Rada Toksikol. 2012, 63, 519–530.
[26]
Jurjevi?, ?.; Solfrizzo, M.; Cvjetkovi?, B.; Avantaggiato, G.; Visconti, A. Ochratoxin A and fumonisins (B1 and B2) in corn from Balkan nephropathy endemic and non endemic areas of Croatia. Mycot. Res. 1999, 15, 67–80.
[27]
Vrabcheva, T.; Usleber, E.; Dietrich, R.; Ma?rtlbauer, E. Co-occurrence of ochratoxin A and citrinin in cereals from bulgarian villages with a history of Balkan endemic nephropathy. J. Agric. Food Chem. 2000, 48, 2483–2488, doi:10.1021/jf990891y.
[28]
Puntari?, D.; Bo?nir, J.; ?mit, Z.; ?kes, I.; Baklai?, ?. Ochratoxin A in corn and wheat: Geographical association with endemic nephropathy. Croat. Med. J. 2001, 42, 175–180.
[29]
Domijan, A.M.; Peraica, M.; ?lender, V.; Cvjetkovi?, B.; Jurjevi?, ?.; Topolovec-Pintari?, S.; Ivi?, D. Seed-borne fungi and ochratoxin A contamination of dry beans (Phaseolus vulgaris L.) in the Republic of Croatia. Food Chem. Toxicol. 2005, 43, 427–432, doi:10.1016/j.fct.2004.12.002.
[30]
Streit, E.; Schatzmayr, G.; Tassis, P.; Tzika, E.; Marin, D.; Taranu, I.; Tabuc, C.; Nicolau, A.; Aprodu, I.; Puel, O.; et al. Current situation of mycotoxin contamination and co-occurrence in animal feed-focus on Europe. Toxins 2012, 4, 788–809, doi:10.3390/toxins4100788.
[31]
Ibáńez-Vea, M.; González-Peńas, E.; Lizarraga, E.; López de Cerain, A.L. Co-occurrence of aflatoxins, ochratoxin A and zearalenone in barley from a northern region of Spain. Food Chem. 2012, 132, 35–42.
[32]
Ibá?ez-Vea, M.; González-Pe?as, E.; Lizarraga, E.; López de Cerain, A.L. Co-occurrence of mycotoxins in Spanish barley: A statistical overview. Food Control 2012, 28, 295–298.
[33]
Anfossi, L.; Baggiani, C.; Giovannoli, C.; D’Arco, G.; Passini, C.; Giraudi, G. Occurrence of aflatoxin M1 in Italian cheese: Results of a survey conducted in 2010 and correlation with manufacturing, production season, milking animals, and maturation of cheese. Food Control 2012, 25, 125–130.
[34]
Doma?inovi?, M.; ?osi?, J.; Klapec, T.; Peraica, M.; Mitak, M.; Gross-Bo?kovi?, A.; ?arkovi?, K. Frequency and level of animal feed contamination by mycotoxins in Croatia. In Proceedings of Krmiva 2013, Opatija, Croatia, 5–7 June 2013; pp. 29–30.
[35]
Bertuzzi, T.; Rastelli, S.; Mulazzi, A.; Donadini, G.; Pietri, A. Mycotoxin occurrence in beer produced in several European countries. Food Control 2011, 22, 2059–2064, doi:10.1016/j.foodcont.2011.06.002.
[36]
Ozbey, F.; Kabak, B. Natural co-occurrence of aflatoxins and ochratoxin A in spices. Food Control 2012, 28, 354–361, doi:10.1016/j.foodcont.2012.05.039.
[37]
Kabak, B. Determination of aflatoxins and ochratoxin A in retail cereal products from Turkey by high performance liquid chromatography with fluorescence detection. Food Control 2012, 28, 1–6, doi:10.1016/j.foodcont.2012.04.043.
[38]
Kabak, B. Aflatoxin M1 and ochratoxin A in baby formulae in Turkey: Occurrence and safety evaluation. Food Control 2012, 26, 182–187, doi:10.1016/j.foodcont.2012.01.032.
[39]
Imperato, R.; Campone, L.; Piccinelli, A.L.; Veneziano, A.; Rastrelli, L. Survey of aflatoxins and ochratoxin a contamination in food products imported in Italy. Food Control 2011, 22, 1905–1910, doi:10.1016/j.foodcont.2011.05.002.
[40]
Raiola, A.; Meca, G.; Ma?es, J.; Ritieni, A. Bioaccessibility of deoxynivalenol and its natural co-occurrence with ochratoxin A and aflatoxin B1 in Italian commercial pasta. Food Addit. Contam. 2012, 50, 280–287.
[41]
Ibáńez-Vea, M.; González-Peńas, E.; Lizarraga, E.; López de Cerain, A.L. Co-occurrence of aflatoxins, ochratoxin A and zearalenone in breakfast cereals from spanish market. Food Control 2011, 22, 1949–1955, doi:10.1016/j.foodcont.2011.05.008.
[42]
Vidal, A.; Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Determination of aflatoxins, deoxynivalenol, ochratoxin A and zearalenone in wheat and oat based bran supplements sold in the Spanish market. Food Chem. Toxicol. 2013, 53, 133–138.
[43]
Serrano, A.B.; Font, G.; Ruiz, M.J.; Ferrer, E. Co-occurrence and risk assessment of mycotoxins in food and diet from Mediterranean area. Food Chem. 2012, 135, 423–429, doi:10.1016/j.foodchem.2012.03.064.
[44]
Markov, K.; Pleadin, J.; Bevardi, M.; Vah?i?, N.; Sokoli?-Mihalak, D.; Frece, J. Natural occurrence of aflatoxin B1, ochratoxin A and citrinin in Croatian fermented meat products. Food Control 2013, 34, 312–317, doi:10.1016/j.foodcont.2013.05.002.
[45]
Pepeljnjak, S.; Bla?evi?, N. Contamination with molds and occurrence of ochratoxin A in smoked meat products from endemic nephropathy region of Yugoslavia. In Proceedings of Vth International IUPAC Symposium on Mycotoxins and Phycotoxins, Vienna, Austria, 1–3 September 1982; Pfannhauser, W., Czedick-Eysenberg, P.B., Eds.; pp. 102–105.
[46]
S?rensen, L.M.; Mogensen, J.; Nielsen, K.F. Simultaneous determination of ochratoxin A, mycophenolic acid and fumonisin B2 in meat products. Anal. Bioanal. Chem. 2010, 398, 1535–1542.
[47]
Speijers, G.J.A.; Speijers, M.H.M. Combined toxic effect of mycotoxins. Toxicol. Lett. 2004, 153, 91–98, doi:10.1016/j.toxlet.2004.04.046.
[48]
Grenier, B.; Oswald, I.P. Mycotoxin co-contamination of food and feed: meta-analysis of publications describing toxicological interactions. World Mycotoxin J. 2011, 4, 285–313, doi:10.3920/WMJ2011.1281.
[49]
Pfohl-Leszkowicz, A.; Petkova-Bocharova, T.; Chernozemsky, I.N.; Castegnaro, M. Balkan endemic nephropathy and associated urinary tract tumors: A review on aetiological causes and the potential role of mycotoxins. Food Addit. Contam. 2002, 19, 282–302, doi:10.1080/02652030110079815.
[50]
Pfohl-Leszkowicz, A.; Manderville, R.A. Ochratoxin A: An overview on toxicity and carcinogenicity in animals and humans. Mol. Nutr. Food Res. 2007, 51, 61–99, doi:10.1002/mnfr.200600137.
[51]
Pfohl-Leszkowicz, A.; Manderville, R.A. An update on direct genotoxicity as molecular mechanism of ochratoxin A carcinogenicity. Chem. Res. Toxicol. 2012, 25, 252–262, doi:10.1021/tx200430f.
[52]
Vettorazzi, A.; van Delft, J.; López de Cerain, A. A review on ochratoxin A transcriptomic studies. Food Chem. Toxicol. 2013, 59, 766–783, doi:10.1016/j.fct.2013.05.043.
[53]
Akman, S.A.; Adams, M.; Case, D.; Park, G.; Manderville, R.A. Mutagenicity of ochratoxin A and its hydroquinone metabolite in the SupF gene of the mutation reporter plasmid Ps189. Toxins 2012, 4, 267–280, doi:10.3390/toxins4040267.
[54]
Hadjeba-Medjdoub, K.; Tozlovanu, M.; Pfohl-Leszkowicz, A.; Frenette, C.; Paugh, R.J.; Manderville, R.A. Structure-activity relationships imply different mechanisms of action for ochratoxin A-mediated cytotoxicity and genotoxicity. Chem. Res. Toxicol. 2012, 25, 181–190, doi:10.1021/tx200406c.
[55]
Hibi, D.; Suzuki, Y.; Ishii, Y.; Jin, M.; Watanabe, M.; Sugita-Konishi, Y.; Yanai, T.; Nohmi, T.; Nishikawa, A.; Umemura, T. Site-specific in vivo mutagenicity int he kidney of gpt delta ratsgiven carcinogenic dose of ochratoxin A. Toxicol. Sci. 2011, 122, 406–414, doi:10.1093/toxsci/kfr139.
[56]
Hibi, D.; Kajima, A.; Kuroda, K.; Suzuki, Y.; Jin, M.; Nakajima, M.; Sugita-Konishi, Y.; Yanai, T.; Nohmi, T.; Nishikawa, A.; et al. Molecular mechanisms underlaying ochratoxin A-induced genotoxicity: Global gene expression analysis suggests induction of DNA double-strand breaks and cell cycle progression. J. Toxicol. Sci. 2013, 38, 57–69, doi:10.2131/jts.38.57.
[57]
Mantle, P.G.; Faucet-Marquis, V.; Manderville, R.A.; Squillaci, B.; Pfohl-Leszkowicz, A. Structures of covalent adducts between DNA and ochratoxin A: A new factor in debate about genotoxicity and human risk assessment. Chem. Res. Toxicol. 2010, 23, 89–98, doi:10.1021/tx900295a.
[58]
Hadjeba-Medjdoub, K. Risk Assesment of Multiexposure to Mycotoxins and Detoxification Strategies Using Yeast by Product Enriched in Glutathione and Selenomethione. PhD Thesis, University of Toulouse, Toulouse, France, 5 June 2012.
[59]
IARC. Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. IARC Monogr. Eval. Carcinog. Risks Hum. 2002, 82, 301–366.
[60]
Hadjeba-Medjdoub, K.; Faucet-Marquis, V.; Tozlovanu, M.; Peraica, M.; Manderville, R.A.; Pfohl-Leszkowicz, A. Synergistic effect of three nephrotoxic and carcinogenic mycotoxins (citrinin, fumonisin, ochratoxin A) on human kidney cells viability and genotoxicity. In Power of Fungi and Mycotoxins in Health and Disease, Proceedings of Power of Fungi and Mycotoxins in Health and Disease, Primo?ten, Croatia, 19–22 October 2011; Antolovi?, R., Mili?evi?, T., Eds.; Croatian Mycrobiological Society: Zagreb, Croatia, 2011; p. 57.
[61]
Hetherington, A.C.; Raistrick, H. Studies on biochemistry of microorganisms. Par XIV. On the production and chemical constitution of a new yellow coloring matter, citrinin produced from glucose by Penicillium citrininum Thom. Phil. Trans. Roy. Soc. Lond. B Biol. Sci. 1931, 220, 269–296, doi:10.1098/rstb.1931.0025.
[62]
Raistrick, H.; Smith, G. Antibacterial substances from moulds. Chem. Ind. London 1941, 6, 828–830.
[63]
Bouslimi, A.; Ouannes, Z.; Golli, E.E.; Bouaziz, C.; Hassen, W.; Bacha, H. Cytotoxicity and oxidative damage in kidney cells exposed to the mycotoxins ochratoxin A and citrinin: Individual and combined effects. Toxicol. Mechan. Meth. 2008, 18, 341–349, doi:10.1080/15376510701556682.
[64]
Chagas, G.M.; Campello, A.P.; Klüppel, M.L. Mechanism of citrinin-induced dysfunction of mitochondria. I. Effects on respiration enzyme activities and membrane potential of renal cortical mitochondria. J. Appl. Toxicol. 1992, 12, 123–129, doi:10.1002/jat.2550120209.
[65]
Chagas, G.M.; Olivera, M.A.; Campello, A.P.; Klüppel, M.L. Mechanism of citrinin-induced dysfunction of mitochondria. IV. Effect on Ca2+ transport. Cell Biochem. Funct. 1995, 13, 53–59.
[66]
Klari?, M.S.; ?elje?i?, D.; Rumora, L.; Peraica, M.; Pepeljnjak, S.; Domijan, A.M. A potential role of calcium in apoptosis and aberrant chromatin forms in porcine kidney PK15 cells induced by individual and combined ochratoxin A and citrinin. Arch. Toxicol. 2012, 86, 97–107, doi:10.1007/s00204-011-0735-9.
[67]
Yu, F.Y.; Liao, Y.C.; Chang, C.H.; Liu, B.H. Citrinin induces apoptosis in HL-60 cells via activation of the mitochondrial pathway. Toxicol. Lett. 2006, 161, 143–151, doi:10.1016/j.toxlet.2005.08.009.
[68]
Jeswal, P. Citrinin-induced chromosomal abnormalities in the bone-marrow cells of Mus musculus. Cytobiosis 1996, 86, 29–33.
[69]
Martin, W.; Lorkowsky, G.; Creppy, E.E.; Dirheimer, G.; Roschenthaler, R. Action of citrinin on bacteria chromosomal and plasmid DNA in vivo and in vitro. Appl. Environ. Microbiol. 1986, 52, 1273–1279.
[70]
Knasmüller, S.; Cavin, C.; Chakraborty, A.; Darroudi, F.; Majer, B.J.; Huber, W.W.; Erlich, V.A. Structurally related mycotoxin ochratoxin A, ochratoxin B, and citrinin differ in their genotoxic activities and in their mode of action in human-derived liver (HepG2) cells: Implications for risk assessment. Nutr. Cancer 2004, 50, 190–197.
[71]
D?mnez-Altuntas, H.; Dumlupinar, G.; Imamoglu, N.; Hamurcu, Z.; Liman, B.C. Effects of the mycotoxin citrinin on micronucleus formation in a cytokinesis-block genotoxicity assay in cultured human lymphocytes. J. Appl. Toxicol. 2007, 27, 337–341.
[72]
Pfeiffer, E.; Gross, K.; Metzler, M. Aneuploidogenic and clastogenic potential of mycotoxins citrinin and patulin. Carcinogenesis 1998, 19, 1313–1318.
[73]
Thust, R.; Kneist, S. Activity of citrinin mebabolized by rat and human microsome fraction in clastogenicity and SCE assay on Chinese hamster V78-E cells. Mutat. Res. 1979, 67, 321–330, doi:10.1016/0165-1218(79)90028-4.
[74]
Liu, B.H.; Yu, F.Y.; Wu, T.S.; Li, S.Y.; Su, M.C.; Wang, M.C.; Shih, S.M. Evaluation of genotoxic risk on oxidative DNA damage in mammalian cells exposed to mycotoxins, patulin and citrinin. Toxicol. Appl. Pharmacol. 2003, 191, 255–263, doi:10.1016/S0041-008X(03)00254-0.
[75]
Flajs, D.; ?elje?i?, D.; Mladini?, M.; Peraica, M. Effects of citrinin treatment on oxidative stress in rat kidney. Toxicol. Lett. 2010, 196 (Suppl. 17), S239.
[76]
Pfohl-Leszkowicz, A.; Molinié, A.; Tozlovanu, M.; Manderville, R.A. Combined toxic effects of ochratoxin A and citrinin, in vivo and in vitro. In Food Contaminants: Mycotoxins and Food Allergens; Siantar, D.P., Trucksess, MW., Scott, P.M., Herman, EM., Eds.; Oxford University Press: New York, NY, USA, 2008; pp. 56–79.
[77]
Manderville, R.A.; Pfohl-Leszkowicz, A. (2008) Bioactivation and DNA Adduction as a Rationale for Ochratoxin A Carcinogenesis. World Mycotoxin J. 2008, 1, 357–367, doi:10.3920/WMJ2008.x039.
[78]
Würgler, F.E.; Friedrich, U.; Schlatter, J. Lack of mutagenicity of ochratoxin A and B, citrinin, patulin and cnestine in Salmonella typhimurium TA102. Mutat. Res. 1991, 261, 209–216, doi:10.1016/0165-1218(91)90069-X.
[79]
IARC. Citrinin. In Some Naturally Occurring and Synthetic Food Components, Coumarins and Ultraviolet Radiation. IARC Monogr. Eval. Carcinog. Risks Hum. 1998, 40, 67.
[80]
F?llman, W.; Lebrun, S.; Kullik, B.; Koch, M.; R?mer, C.; Golka, K. Cytotoxicity of ochratoxin A and citrinin in different cell types in vitro. Mycotox. Res. 2000, 16, 123–126, doi:10.1007/BF02942998.
[81]
Heussner, A.H.; O’Brien, E.; Haehnlein, J.; Biester, M.A.; Dietrich, D.R. Comparison of interactive cytotoxic effects of selected mycotoxins on renal cells. Toxicol. Sci. 2004, 78 (S-1), 89.
[82]
Knecht, A.; Schwerdt, G.; Gekle, M.; Humpf, H.-U. Combinatory effects of citrinin and ochratoxin A in immortalized human proximal tubule cells. Mycotoxin Res. 2005, 21, 176–181, doi:10.1007/BF02959258.
[83]
Flajs, D.; Mladini?, M; ?elje?i?, D.; Peraica, M. Citrinin potentiates ochratoxin A toxicity. Toxicol. Lett. 2011, 205 (Suppl. 28), S220–S221.
[84]
Bouslimi, A.; Bouaziz, C.; Ayed-Boussema, I.; Hassen, W.; Bacha, H. Individual and cobined effects of ochratoxin A and citrinin on viability and DNA fragmentation in cultured Vero cells and on chromosome abberations in mice bone marrow cells. Toxicology 2008, 251, 1–7, doi:10.1016/j.tox.2008.06.008.
[85]
Vesela, D.; Vesely, D.; Jelinek, R. Toxic effect of ochratoxin A and citrinin, alone and in combination, on chicken embryos. Appl. Environ. Microbiol. 1983, 45, 91–93.
[86]
Mayura, K.; Parker, R.; Berndt, W.O.; Phillips, T.D. Effect of simultaneous prenatal exposure to ochratoxin A and citrinin in the rat. J. Toxicol. Environ. Health 1984, 13, 553–561, doi:10.1080/15287398409530520.
[87]
Glahn, R.P.; Wiederman, R.F.; Evangelisti, J.W. Effects of ochratoxin A alone and in combination with citrinin on kidney function of single comb white leghorn pullets. Poult. Sci. 1988, 67, 1034–1042, doi:10.3382/ps.0671034.
[88]
Manning, R.O.; Brown, T.P.; Wyatt, R.D.; Fletcher, O.J. The individual and combined effects of citrinin and ochratoxin A in broiler chicks. Avian Dis. 1985, 29, 986–997, doi:10.2307/1590451.
[89]
Kumar, M.; Dwivedi, P.; Sharma, A.K.; Singh, N.S., Patil. Ochratoxin A and citrinin nephrotoxicity in New Zealand White rabbits: An ultrastructural assessment. Mycopathologia 2007, 163, 21–30, doi:10.1007/s11046-006-0079-9.
[90]
Kitchen, D.N.; Carlton, W.W.; Tuite, J. Ochratoxin A and citrinin induced nephrosis in beagle dogsl. II. Pathology. Vet. Pathol. 1997, 14, 261–272, doi:10.1177/030098587701400309.
[91]
Ciegler, A.; Detroy, R.W.; Lillehoj, L.B. Patulin, penicillic acid, and other carcinogenic lactones. Microb. Toxins 1971, 6, 409–434.
[92]
Dickens, F.; Jones, H.E.H. Carcinogenic activity of a series of reactive lactones and related substances. Br. J. Cancer. 1961, 15, 85–100, doi:10.1038/bjc.1961.10.
[93]
Umeda, M.; Yamamoto, T.; Saito, M. DNA-strand breakage of HeLa cells induced by several mycotoxins. Jpn. J. Exp. Med. 1972, 42, 527–539.
[94]
IARC. Penicillic acid. In Some Naturally Occurring Substances. IARC Monogr. Eval. Carcinog. Risks Hum. 1998, 10, 21.
[95]
Stoev, S.D.; Denev, S.; Dutton, M.; Nkosi, B. Cytotoxic effect of some mycotoxins and their combinations on human peripheral blood mononuclear cells as measured by MTT assay. Open Toxinol. J. 2009, 2, 1–8, doi:10.2174/1875414700902010001.
[96]
Huff, W.E.; Hamilton, P.B.; Ciegler, A. Evaluation of penicillic acid for toxicity in broiler chickens. Poult. Sci. 1980, 59, 1203–1207.
[97]
Chan, P.K.; Hayes, A.W. Effect of penicillic acid on biliary excretion of indocyanin green in the mouse and rat. J. Toxicol. Environ. Heal. 1981, 7, 169–179, doi:10.1080/15287398109529970.
[98]
Kubena, L.F.; Phillips, T.D.; Witzel, D.A.; Heidelbaugh, N.D. Toxicity of ochratoxin A and penicillic acid to chicks. Bull. Environ. Contam. Toxicol. 1984, 32, 711–716, doi:10.1007/BF01607561.
[99]
Shepherd, E.C.; Phillips, T.D.; Joiner, G.N.; Kubena, L.F.; Heidelbaugh, N.D. Ochratoxin A and penicillic acid interaction in mice. J. Environ. Sci. Health 1981, B16, 557–573.
[100]
Parker, R.; Phillips, T.; Kubena, L.; Russell, L.H.; Heidelbaugh, N.D. Inhibition of pancreatic carboxypeptidase A: A possible mechanism of interaction between penicillic acid and ochratoxin A. J. Environ. Sci. Health 1982, B17, 77–91.
[101]
Stoev, S.D.; Denev, S.; Dutton, M.; Njobeh, P.; Mosonik, J.; Steenkamp, P.; Petkov, I. Complex etiology and pathology of mycotoxic nephropathy in South African pigs. Mycotox. Res. 2010, 26, 31–46.
[102]
Stoev, S.D.; Daskalov, H.; Radi?, B.; Domijan, A.; Peraica, M. Spontaneous mycotoxin nephropathy in Bulgarian chickens with unclarified mycotoxin aetiology. Vet. Res. 2002, 33, 83–94, doi:10.1051/vetres:2001008.
[103]
Stoev, S.D.; Vitanov, S.; Anguelov, G.; Petkova-Bocharova, T.; Creppy, E.E. Experimental mycotoxic nephropathy in pigs provoked by a mouldy diet containing ochratoxin A and penicillic acid. Vet. Res. Commun. 2001, 25, 205–223.
[104]
Stoev, S.D.; Stefanov, M.; Denev, S.; Radi?, B.; Domijan, A.; Peraica, M. Experimental mycotoxicosis in chickens induced by ochratoxin A and penicillic acid and intervention by natural plant extracts. Vet. Res. Commun. 2004, 28, 727–746.
[105]
Micco, C.; Miraglia, M.; Onori, R.; Libanori, A.; Brera, C.; Mantovani, A.; Macri, C. Effect of combined exposure to ochratoxin A and penicillic acid on residues and toxicity in broilers. La Ravista della Societa Italiana di Scienza dell’Allimentazione 1991, 20, 101–108.
[106]
Müller, S.; Dekant, W.; Mally, A. Fumonisin B1 and the kidney: Modes of action for renal tumor formation by fumonisin B1 in rodents. Food Chem. Toxicol. 2012, 50, 3833–3846.
[107]
National Toxicology Program (NTP). . National Toxicology Program Technical Reports; National Institute of Environmental Health Sciences: Research Triangle Park, NC, USA, 2001; pp. 1–352.
[108]
Ueno, Y.; Iijima, K.; Wang, S.-D.; Sugiura, Y.; Sekijima, M.; Tanaka, T.; Chen, C.; Yu, S.Z. Fumonisins as a possible contributory risk factor for primary liver cancer: A 3-year study of corn harvested in Haimen, China, by HPLC and ELISA. Food Chem. Toxicol. 1997, 35, 1143–1150, doi:10.1016/S0278-6915(97)00113-0.
[109]
Knasmüeller, S.; Bresgen, N.; Kassie, F.; Mersch-Sundermann, V.; Gelderblom, W.; Zoehrer, E.; Eckl, P.M. Genotoxic effects of three Fusarium mycotoxins, fumonisin B1, moniliformin and vomitoxin in bacteria and in primary culturesof rat hepatocytes. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 1997, 391, 39–48, doi:10.1016/S0165-1218(97)00030-X.
[110]
Gelderblom, W.C.; Semple, E.; Marasas, W.F.; Farber, E. The cancer-initiating potential of the fumonisin B mycotoxins. Carcinogenesis 1992, 13, 433–437.
[111]
Norred, W.P.; Plattner, R.D.; Vesonder, R.F.; Bacon, C.W.; Voss, K.A. Effects of selected secondary metabolites of Fusarium moniliforme on unscheduled synthesis of DNA by rat primary hepatocytes. Food Chem. Toxicol. 1992, 30, 233–237, doi:10.1016/0278-6915(92)90038-M.
[112]
Domijan, A.M.; Peraica, M.; Vrdoljak, A.L.; Radi?, B.; ?lender, V.; Fuchs, R. The involvement of oxidative stress in ochratoxin A and fumonisin B1 toxicity in rats. Mol. Nutr. Food Res. 2007, 51, 1147–1151, doi:10.1002/mnfr.200700079.
[113]
Domijan, A.M.; ?elje?i?, D.; Kopjar, N.; Peraica, M. Standard and Fpg-modified comet assay in kidney cells of ochratoxin A- and fumonisin B1-treated rats. Toxicology 2006, 222, 53–59, doi:10.1016/j.tox.2006.01.024.
[114]
Pinelli, E.; Poux, N.; Garren, L.; Castegnaro, M.; Pipy, B.; Miller, J.D.; Pfohl-Leszkowicz, A. Activation of Mitogen-activated protein kinase by fumonisin B1 stimulates the arachidonic acid cascade and cAMP production. Carcinogenesis 1999, 20, 1683–1688.
[115]
Poux, N.; Pinelli, E.; Castegnaro, M.; Miller, D.J.; Pfohl-Leszkowicz, A. Effects of fumonisin B1 on cell signal transduction pathways: Main role of MAPKs. In Mycotoxins and Phycotoxins in Perspective at the Turn of the Millenium, Proceedings of Xth International IUPAC Symposium on Mycotoxins and Phycotoxins, Guarujá, Brasil, 21–25 May 2000; Koe, W.J., Samson, R.A., Gilbert, J., Sabino, M., Eds.; International Union of Pure and Applied Chemistry (IUPAC): Research Triangle Park, NC, USA, 2001; pp. 251–257.
[116]
Creppy, E.E.; Chirappa, P.; Baudrimont, I.; Borracci, P.; Moukha, S.; Carratu, M.R. Synergistic effects of fumonisn B1 and ochratoxin A: Are in vitro cytotoxicity data predictive of in vivo acute toxicity? Toxicology 2004, 201, 115–123.
[117]
Klari?, M.S.; Pepeljnjak, S.; Domijan, A.M.; Petrik, J. Lipid peroxidation and glutathione levels in porcine kidney PK15 cells after individual and combined treatment with fumonisin B1, beauvericin and ochratoxin A. Basic Clin. Pharmacol. Toxicol. 2007, 100, 157–164, doi:10.1111/j.1742-7843.2006.00019.x.
[118]
Klari?, M.S.; Rumora, L.; Ljubanovi?, D.; Pepeljnjak, S. Cytotoxicity and apoptosis induced by fumonisin B1, beauvericin and ochratoxin A in porcine kidney PK15 cells: Effects of individual and combined treatment. Arch. Toxicol. 2008, 82, 247–255.
[119]
Kubena, L.F.; Edrington, T.S.; Harvey, R.B.; Phillips, T.D.; Sarr, A.B.; Rottinghaus, G.E. Individual and combined effects of fumonisin B1 present in Fusarium moniliforme culture material and diacetoxyscirpenol or ochratoxin A in turkey poults. Poult. Sci. 1997, 76, 256–264.
[120]
Sivakumar, G.; Dwivedi, P.; Sharma, A.K.; Kumar, M.; Nimalesan, S. Fumonisin B1 and ochratoxin A induced biochemical changes in young male New Zealand White rabbits. Indian J. Vet. Pathol. 2009, 33, 30–34.
[121]
Klari?, M.S.; Pepeljnjak, S.; Rozgaj, R. Genotoxicity of fumonisin B1, beauvericin and ochratoxin A in porcine kidney PK15 cells: Effects of individual and combined treatment. Croat. Chem. Acta 2008, 81, 139–146.
[122]
Stoev, S.D.; Gundasheva, D.; Zarkov, I.; Mircheva, T.; Zapryanova, D.; Denev, S.; Mitev, Y.; Daskalov, H.; Dutton, M.; Mwanza, M.; et al. Experimental mycotoxic nephropathy in pigs provoked by a mouldy diet containing ochratoxin A and fumonisin B1. Exp. Toxicol. Pathol. 2012, 64, 733–741, doi:10.1016/j.etp.2011.01.008.
[123]
Bedard, L.L.; Massey, T.E. Aflatoxin B1-induced DNA damage and its repair. Cancer Lett. 2006, 241, 174–183.
Wu, H.C.; Santella, R. The role of aflatoxins in hepatocellular carcinoma. Hepat. Mon. 2012, 12, e7238.
[126]
IARC. Aflatoxins. In Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene. IARC Monogr. Eval. Carcinog. Risks Hum. 2002, 82, 1–556.
[127]
Galtier, P.; Meissonnier, G.; Laffitte, J.; Oswald, I.P.; Loiseau, N. Molecular interactions between mycotoxins and liver enzymes involved in drug metabolism in rodents and farm animals. Krmiva 2008, 50, 205–213.
[128]
Yunus, A.W.; Razzazi-Fazeli, E.; B?hm, J. Aflatoxin B1 in affecting broiler’s performance, immunity, and gastrointestinal tract: A review of history and contemporary issues. Toxins 2011, 3, 566–590, doi:10.3390/toxins3060566.
[129]
Golli-Bennour, E.E.; Kouidhi, B.; Bouslimi, A.; Abid-Essefi, S.; Hassen, W.; Bacha, H. Cytotoxicity and genotoxicity induced by aflatoxin B1, ochratoxin A, and their combination in cultured Vero cells. J. Biochem. Mol. Toxicol. 2010, 24, 42–50, doi:10.1002/jbt.20310.
[130]
Corcuera, L.A.; Arbillaga, L.; Vettorazzi, A.; Azqueta, A.; de Cerain, L. Ochratoxin A reduces aflatoxin B1 induced DNA damage detected by the comet assay in Hep G2 cells. Food Chem. Toxicol. 2011, 49, 2883–2889, doi:10.1016/j.fct.2011.07.029.
[131]
Huff, W.E.; Doerr, J.A. Synergism between aflatoxin and ochratoxin A in broiler chickens. Poult. Sci. 1981, 60, 550–555, doi:10.3382/ps.0600550.
[132]
Sakhare, P.S.; Harne, S.D.; Kalorey, D.R.; Warke, S.R.; Bhandarkar, A.G.; Kurkure, N.V. Effect of Toxiroak? polyherbal feed supplement during induced aflatoxicosis, ochratoxicosis and combined mycotoxicoses in broilers. Vet. Arh. 2007, 2, 129–146.
[133]
Corcuera, L.A.; Vettorazzi, A.; Arbillaga, L.; González-Peńas, E.; López de Cerain, A. An approach to the toxicity and toxicokinetics of aflatoxin B1 and ochratoxin A after simultaneous oral administration to fasted F344 rats. Food Chem. Toxicol. 2012, 50, 3440–3446.