全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Toxins  2013 

Effects of Vitamin D3, Calcipotriol and FTY720 on the Expression of Surface Molecules and Cytolytic Activities of Human Natural Killer Cells and Dendritic Cells

DOI: 10.3390/toxins5111932

Keywords: natural killer cells, dendritic cells, vitamin D3, calcipotriol, FTY720, cytotoxicity, receptors, NK17/NK1 cells

Full-Text   Cite this paper   Add to My Lib

Abstract:

We describe here the effects of three drugs that are either approved or have the potential for treating multiple sclerosis (MS) patients through the in vitro activities of human natural killer (NK) cells and dendritic cells (DCs). Our results indicate that 1,25(OH) 2D 3, the biologically active metabolite of vitamin D 3, calcipotriol and FTY720 augment IL-2-activated NK cell lysis of K562 and RAJI tumor cell lines as well as immature (i) and mature (m) DCs, with variable efficacies. These results are corroborated with the ability of the drugs to up-regulate the expression of NK cytotoxicity receptors NKp30 and NKp44, as well as NKG2D on the surfaces of NK cells. Also, they down-regulate the expression of the killer inhibitory receptor CD158. The three drugs down-regulate the expression of CCR6 on the surface of iDCs, whereas vitamin D 3 and calcipotriol tend to up-regulate the expression of CCR7 on mDCs, suggesting that they may influence the migration of DCs into the lymph nodes. Finally, vitamin D 3, calcipotriol and FTY720 enhance NK17/NK1 cell lysis of K562 cells, suggesting that a possible mechanism of action for these drugs is via activating these newly described cells. In conclusion, our results show novel mechanisms of action for vitamin D 3, calcipotriol and FTY720 on cells of the innate immune system.

References

[1]  Fauriat, C.; Long, E.O.; Ljunggren, H.G.; Bryceson, Y.T. Regulation of human NK-cell cytokine and chemokie production by target cell recognition. Blood 2010, 115, 2167–2176.
[2]  Maghazachi, A.A. Compartmentalization of human natural killer cells. Mol. Immunol. 2005, 42, 523–529.
[3]  Wood, S.M.; Ljunggren, H.G.; Bryceson, Y.T. Insights into NK cell biology from human genetics and disease associations. Cell. Mol. Life Sci. 2011, 68, 3479–3493, doi:10.1007/s00018-011-0799-y.
[4]  Maghazchi, A.A. On the role of natural killer cells in neurodegenerative diseases. Toxins 2013, 5, 363–375, doi:10.3390/toxins5020363.
[5]  Maghazachi, A.A. Role of natural killer cells in multiple sclerosis. ISRN Immunol. 2012, doi:10.5402/2012/795075.
[6]  Benczur, M.; Petranyl, G.G.; Palffy, G.; Varga, M.; Talas, M.; Kotsy, B.; F?ldes, I.; Hollán, S.R. Dysfunction of natural killer cells in multiple sclerosis: A possible pathogenetic factor. Clin. Exp. Immunol. 1980, 39, 657–662.
[7]  Kastrukoff, L.F.; Morgan, N.G.; Aziz, T.M.; Zecchini, D.; Berkowitz, J.; Paty, D.W. Natural killer (NK) cells in chronic progressive multiple sclerosis patients treated with lymphoblastoid interferon. J. Neuroimmunol. 1998, 20, 15–23.
[8]  Grunebaum, E.; Malatzky-Goshen, E.; Shoenfeld, Y. Natural killer cells and autoimmunity. Immunol. Res. 1989, 8, 292–304, doi:10.1007/BF02935514.
[9]  Zhang, B.; Yamamura, T.; Kondo, T.; Fujiwara, M.; Tabira, T. Regulation of experimental autoimmune encephalomyelitis by natural killer (NK) cells. J. Exp. Med. 1997, 186, 1677–1687, doi:10.1084/jem.186.10.1677.
[10]  Kaur, G.; Trowsdale, J.; Fugger, L. Natural killer cells and their receptors in multiple sclerosis. Brain 2013, 136, 2657–2676, doi:10.1093/brain/aws159.
[11]  Winkler-Pickett, R.; Young, H.A.; Cherry, J.M.; Diehl, J.; Wine, J.; Back, T.; Bere, W.E.; Mason, A.T.; Ortaldo, J.R. In vivo regulation of experimental autoimmune encephalomyelitis by NK cells: Alteration of primary adaptive responses. J. Immunol. 2008, 180, 4495–4506.
[12]  Vollmer, T.L.; Liu, R.; Price, M.; Rhodes, S.; La, C.A.; Shi, F.D. Differential effects of IL-21 during initiation and progression of autoimmunity against neuroantigen. J. Immunol. 2005, 174, 2696–2701.
[13]  Sand, K.L.; Rolin, J.; Knudsen, E.; Al-Falahi, Y.; Maghazachi, A.A. Modulation of natural killer cell cytotoxicity and cytokine release by the drug glatiramer acetate. Cell. Mol. Life Sci. 2009, 66, 1446–1456, doi:10.1007/s00018-009-8726-1.
[14]  Al-Falahi, Y.; Sand, K.L.; Knudsen, E.; Damaj, B.B.; Rolin, J.; Maghazachi, A.A. Splenic natural killer cell activity in two models of experimental neurodegenerative diseases. J. Cell. Mol. Med. 2009, 13, 2693–2703, doi:10.1111/j.1582-4934.2008.00640.x.
[15]  H?glund, R.; Harbo, H.F.; Holm?y, T.; Maghazachi, A.A. A one year follow-up study of natural killer and dendritic cells activities in multiple sclerosis patients receiving glatiramer acetate. PLoS One 2013, 8, e62237.
[16]  Hestvick, A.L.K. The Double-edged sword of autoimmunity: Lessons from multiple sclerosis. Toxins 2010, 2, 856–877, doi:10.3390/toxins2040856.
[17]  Ascherio, A.; Munger, K.L. Environmental risk factors for multiple sclerosis. Part II: Noninfectious factors. Ann. Neurol. 2007, 61, 504–513, doi:10.1002/ana.21141.
[18]  Ascherio, A.; Munger, K.L.; Simon, K.C. Vitamin D and multiple sclerosis. Lancet Neurol. 2010, 9, 599–612, doi:10.1016/S1474-4422(10)70086-7.
[19]  Brustad, M.; Sandanger, T.; Aksnes, L.; Lund, E. Vitamin D status in a rural population of northern Norway with high fish liver consumption. Public Health Nutr. 2004, 7, 783–789.
[20]  Lemire, J.M.; Archer, D.C. 1,25-dihydroxyvitamin D3 prevents the in vivo induction of murine experimental autoimmune encephalomyelitis. J. Clin. Investig. 1991, 87, 1103–1107, doi:10.1172/JCI115072.
[21]  Cantorna, M.T.; Hayes, C.E.; DeLuca, H.F. 1,25-Dihydroxyvitamin D3 reversibly blocks the progression of relapsing encephalomyelitis, a model of multiple sclerosis. Proc. Natl. Acad. Sci. USA 1996, 93, 7861–7864, doi:10.1073/pnas.93.15.7861.
[22]  Burton, J.M.; Kimball, S.; Vieth, R.; Bar-Or, A.; Dosch, H.M.; Cheung, R.; Gagne, D.; D’Souza, C.; Ursell, M.; O’Connor, P. A phase I/II dose-escalation trial of vitamin D3 and calcium in multiple sclerosis. Neurology 2010, 74, 1852–1859, doi:10.1212/WNL.0b013e3181e1cec2.
[23]  Smolders, J.; Thewissen, M.; Peelen, E.; Menheere, P.; Tervaert, J.W.; Damoiseaux, J.; Hupperts, R. Vitamin D status is positively correlated with regulatory T cell function in patients with multiple sclerosis. PLoS One 2009, 4, e6635.
[24]  Smolders, J.; Peelen, E.; Thewissen, M.; Tervaert, J.W.; Menheere, P.; Hupperts, R.; Damoiseaux, J. Safety and T cell modulating effects of high hose vitamin D3 supplementation in multiple sclerosis. PLoS One 2010, 5, e15235.
[25]  Wergeland, S.; Torkildsen, ?.; Myhr, K.M.; Aksnes, L.; M?rk, S.J.; B?, L. Dietary vitamin D3 supplements reduce demyelination in the cuprizone model. PLoS One 2011, 6, e26262.
[26]  Brinkmann, V. Sphingosine 1-phosphate receptors in health and disease: Mechanistic insights from gene deletion studies and reverse pharmacology. Pharmacol. Ther. 2007, 115, 84–105, doi:10.1016/j.pharmthera.2007.04.006.
[27]  Kveberg, L.; Bryceson, Y.; Inngjerdingen, M.; Rolstad, B.; Maghazachi, A.A. Sphingosine 1 phosphate induces the chemotaxis of human natural killer cells. Role for heterotrimeric G proteins and phosphoinositide 3 kinases. Eur. J. Immunol. 2002, 32, 1856–1864, doi:10.1002/1521-4141(200207)32:7<1856::AID-IMMU1856>3.0.CO;2-B.
[28]  Lagadari, M.; Lehmann, K.; Ziemer, M.; Truta-Feles, K.; Berod, L.; Idzko, M.; Barz, D.; Kamradt, T.; Maghazachi, A.A.; Norgauer, J. Sphingosine-1-phosphate inhibits the cytotoxic activity of NK cells via Gs protein-mediated signaling. Int. J. Oncol. 2009, 34, 287–288.
[29]  Rolin, J.; Sand, K.L.; Knudsen, E.; Maghazachi, A.A. FTY720 and SEW2871 reverse the inhibitory effect of S1P on natural killer cell mediated lysis of K562 tumor cells and dendritic cells but not on cytokine release. Cancer Immunol. Immnuother. 2010, 59, 575–586, doi:10.1007/s00262-009-0775-7.
[30]  Pandya, A.D.; Al-Jaderi, Z.; H?glund, R.A.; Holm?y, T.; Harbo, H.F.; Norgauer, J.; Maghazachi, A.A. Identification of human NK17/NK1 cells. PLoS One 2011, 6, e26780.
[31]  Godiska, R.; Chantry, D.; Raport, C.J.; Sozzani, S.; Allavena, P.; Leviten, D.; Mantovani, A.; Gray, P.W. Human macrophage-derived chemokine (MDC), a novel chemoattractant for monocytes, monocyte-derived dendritic cells, and natural killer cells. J. Exp. Med. 1997, 185, 1595–1604.
[32]  Székely, J.I.; Pataki, á. Effects of vitamin D on immune disorders with special regard to asthma, COPD and autoimmune diseases: A short review. Experts Rev. 2012, 6, 683–704.
[33]  Penna, G.; Amuchastegui, S.; Laverny, G.; Adorini, L. Vitamin D receptor agonists in the treatment of autoimmune diseases: Selective targeting of myeloid but not plasmacytoid dendritic cells. J. Bone Miner. Res. 2007, 22, V69–V73, doi:10.1359/jbmr.07s217.
[34]  Motrich, R.D.; van Etten, E.; Depovere, J.; Riera, C.M.; Rivero, V.E.; Mathieu, C. Impact of vitamin D receptor activity on experimental autoimmune prostatitis. J. Autoimmun. 2009, 32, 140–148.
[35]  Gauzzi, M.C.; Purificato, C.; Donato, K.; Jin, Y.; Wang, L.; Daniel, K.C.; Maghazachi, A.A.; Belardelli, F.; Adorini, L.; Gessani, S. Suppressive effect of 1alpha,25-dihydroxyvitamin D3 on type I IFN-mediated monocyte differentiation into dendritic cells: Impairment of functional activities and chemotaxis. J. Immunol. 2005, 174, 270–276.
[36]  Lee, J.H.; Park, S.; Cheon, S.; Lee, J.H.; Kim, S.; Hur, D.Y.; Kim, T.S.; Yoon, S.R.; Yang, Y.; Bang, S.I.; et al. 1,25-Dihydroxyvitamin D3 enhances NK susceptibility of human melanoma cells via Hsp60-mediated FAS expression. Eur. J. Immunol. 2011, 41, 2937–2946, doi:10.1002/eji.201141597.
[37]  El-Shazly, A.E.; Lefebvre, P.P. Modulation of NK cell autocrine-induced eosinophil chemotaxis by interleukin-15 and vitamin D3: A possible NK-eosinophil crosstalk via IL-8 in the pathophysiology of allergic rhinitis. Mediat. Inflamm. 2011, doi:10.1155/2011/373589.
[38]  Brandt, C.S.; Baratin, M.; Yi, E.C.; Kennedy, J.; Gao, Z.; Fox, B.; Haldeman, B.; Ostrander, C.D.; Kaifu, T.; Chabannon, C.; et al. The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J. Exp. Med. 2009, 206, 1495–1503, doi:10.1084/jem.20090681.
[39]  Simhadri, V.R.; Reiners, K.S.; Hansen, H.P.; Topolar, D.; Simhadri, V.L.; Nohroudi, K.; Kufer, T.A.; Engert, A.; Pogge von Strandmann, E. Dendritic cells release HLA-B-associated transcript-3 positive exosomes to regulate natural killer function. PLoS One 2008, 3, e3377.
[40]  Marras, F.; Nicco, E.; Bozzano, F.; Di Biagio, A.; Dentone, C.; Pontali, E.; Boni, S.; Setti, M.; Orofino, G.; Mantia, E.; et al. Natural killer cells in HIV controller patients express an activated effector phenotype and do not up-regulate NKp44 on IL-2 stimulation. Proc. Natl. Acad. Sci. USA 2013, 110, 11970–11975, doi:10.1073/pnas.1302090110.
[41]  De Maria, A.; Biassoni, R.; Fogli, M.; Rizzi, M.; Cantoni, C.; Costa, P.; Conte, R.; Mavilio, D.; Ensoli, B.; Cafaro, A.; et al. Indentification, molecular cloning and functional characterization of NKp46 and NKp30 natural cytotoxicity receptors in Macaca fascicularis NK cells. Eur. J. Immunol. 2001, 31, 3546–3556, doi:10.1002/1521-4141(200112)31:12<3546::AID-IMMU3546>3.0.CO;2-W.
[42]  Arnon, T.I.; Achdout, H.; Lieberman, N.; Gazit, R.; Gonen-Gross, T.; Katz, G.; Bar-Ilan, A.; Bloushtain, N.; Lev, M.; Joseph, A.; et al. The mechanisms controlling the recognition of tumor- and virus-infected cells by NKp46. Blood 2004, 103, 664–672, doi:10.1182/blood-2003-05-1716.
[43]  Maghazachi, A.A. Insights into seven and single transmembrane-spanning domain receptors and their signaling pathways in human natural killer cells. Pharmacol. Rev. 2005, 57, 339–357, doi:10.1124/pr.57.3.5.
[44]  Ra?ch-Regué, D.; Grau-López, L.; Naranjo-Gómez, M.; Ramo-Tello, C.; Pujol-Borrell, R.; Martínez-Cáceres, E.; Borràs, F.E. Stable antigen-specific T-cell hyporesponsiveness induced by tolerogenic dendritic cells from multiple sclerosis patients. Eur. J. Immunol. 2012, 42, 771–782, doi:10.1002/eji.201141835.
[45]  Kappos, L.; Antel, J.; Comi, G.; Montalban, X.; O’Connor, P.; Polman, C.H.; Haas, T.; Korn, A.A.; Karlsson, G.; Radue, E.W. Oral fingolimod (FTY720) for relapsing multiple sclerosis. N. Engl. J. Med. 2006, 355, 1124–1140, doi:10.1056/NEJMoa052643.
[46]  O’Connor, P.; Comi, G.; Montalban, X.; Antel, J.; Radue, E.W.; de Vera, A.; Pohlmann, H.; Kappos, L. FTY720 D2201 Study Group: Oral fingolimod (FTY720) in multiple sclerosis: Two-year results of a phase II extension study. Neurology 2009, 72, 73–79, doi:10.1212/01.wnl.0000338569.32367.3d.
[47]  Pyne, S.; Pyne, N.J. New perspectives on the role of sphingosine 1-phosphate in cancer. Handb. Exp. Pharmacol. 2013, 216, 55–71.
[48]  Jin, Y.; Knudsen, E.; Wang, L.; Bryceson, Y.; Damaj, B.; Gessani, S.; Maghazachi, A.A. Sphingosine 1-phosphate is a novel inhibitor of T-cell proliferation. Blood 2003, 101, 4909–4915, doi:10.1182/blood-2002-09-2962.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133