Despite the unparalleled diversity of venomous snakes in Australia, research has concentrated on a handful of medically significant species and even of these very few toxins have been fully sequenced. In this study, venom gland transcriptomes were sequenced from eleven species of small Australian elapid snakes, from eleven genera, spanning a broad phylogenetic range. The particularly large number of sequences obtained for three-finger toxin (3FTx) peptides allowed for robust reconstructions of their dynamic molecular evolutionary histories. We demonstrated that each species preferentially favoured different types of α-neurotoxic 3FTx, probably as a result of differing feeding ecologies. The three forms of α-neurotoxin [Type I (also known as (aka): short-chain), Type II (aka: long-chain) and Type III] not only adopted differential rates of evolution, but have also conserved a diversity of residues, presumably to potentiate prey-specific toxicity. Despite these differences, the different α-neurotoxin types were shown to accumulate mutations in similar regions of the protein, largely in the loops and structurally unimportant regions, highlighting the significant role of focal mutagenesis. We theorize that this phenomenon not only affects toxin potency or specificity, but also generates necessary variation for preventing/delaying prey animals from acquiring venom-resistance. This study also recovered the first full-length sequences for multimeric phospholipase A 2 (PLA 2) ‘taipoxin/paradoxin’ subunits from non- Oxyuranus species, confirming the early recruitment of this extremely potent neurotoxin complex to the venom arsenal of Australian elapid snakes. We also recovered the first natriuretic peptides from an elapid that lack the derived C-terminal tail and resemble the plesiotypic form (ancestral character state) found in viper venoms. This provides supporting evidence for a single early recruitment of natriuretic peptides into snake venoms. Novel forms of kunitz and waprin peptides were recovered, including dual domain kunitz-kunitz precursors and the first kunitz-waprin hybrid precursors from elapid snakes. The novel sequences recovered in this study reveal that the huge diversity of unstudied venomous Australian snakes are of considerable interest not only for the investigation of venom and whole organism evolution but also represent an untapped bioresource in the search for novel compounds for use in drug design and development.
References
[1]
Fry, B.G. From genome to "venome": molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res. 2005, 15((3)), 403–420, doi:10.1101/gr.3228405.
[2]
Nisani, Z.; Boskovic, D.S.; Dunbar, S.G.; Kelln, W.; Hayes, W.K. Investigating the chemical profile of regenerated scorpion (Parabuthus transvaalicus) venom in relation to metabolic cost and toxicity. Toxicon 2012, 60((3)), 315–323, doi:10.1016/j.toxicon.2012.04.343.
[3]
Fry, B.G.; Roelants, K.; Champagne, D.E.; Scheib, H.; Tyndall, J.D.; King, G.F.; Nevalainen, T.J.; Norman, J.A.; Lewis, R.J.; Norton, R.S.; Renjifo, C.; de la Vega, R.C. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu. Rev. Genomics Hum. Genet. 2009, 10, 483–511, doi:10.1146/annurev.genom.9.081307.164356.
Earl, S.T.; Masci, P.P.; de Jersey, J.; Lavin, M.F.; Dixon, J. Drug development from Australian elapid snake venoms and the Venomics pipeline of candidates for haemostasis: Textilinin-1 (Q8008), Haempatch (Q8009) and CoVase (V0801). Toxicon 2012, 59((4)), 456–463, doi:10.1016/j.toxicon.2010.12.010.
[6]
Vetter, I.; Davis, J.L.; Rash, L.D.; Anangi, R.; Mobli, M.; Alewood, P.F.; Lewis, R.J.; King, G.F. Venomics: a new paradigm for natural products-based drug discovery. Amino Acids 2011, 40((1)), 15–28, doi:10.1007/s00726-010-0516-4.
[7]
Vink, S.; Jin, A.H.; Poth, K.J.; Head, G.A.; Alewood, P.F. Natriuretic peptide drug leads from snake venom. Toxicon 2012, 59((4)), 434–445, doi:10.1016/j.toxicon.2010.12.001.
[8]
Vonk, F.J.; Admiraal, J.F.; Jackson, K.; Reshef, R.; de Bakker, M.A.; Vanderschoot, K.; van den Berge, I.; van Atten, M.; Burgerhout, E.; Beck, A.; Mirtschin, P.J.; Kochva, E.; Witte, F.; Fry, B.G.; Woods, A.E.; Richardson, M.K. Evolutionary origin and development of snake fangs. Nature 2008, 454((7204)), 630–633, doi:10.1038/nature07178.
[9]
Wilson, S.; Swan, G. A Complete Guide to Reptiles of Australia, 3rd ed. ed.; Chatswood: New Holland, Australia, 2010.
[10]
Sutherland, S.K.; Tibbals, J. Australian Animal Toxins: The Creatures, Their Toxins and Care of the Poisoned Patient, 2nd ed. ed.; Oxford University Press: Melbourne, Australia, 2001.
[11]
Pycroft, K.; Fry, B.G.; Isbister, G.K.; Kuruppu, S.; Lawrence, J.; Ian Smith, A.; Hodgson, W.C. Toxinology of venoms from five Australian lesser known elapid snakes. Basic Clin. Pharmacol. Toxicol. 2012, 111((4)), 268–274.
[12]
Shine, R. Food-habits and reproductive-biology of Australian elapid snakes of the genus Denisonia. J. Herpetol. 1983, 17((2)), 171–175, doi:10.2307/1563458.
[13]
Birrell, G.W.; Earl, S.T.; Wallis, T.P.; Masci, P.P.; de Jersey, J.; Gorman, J.J.; Lavin, M.F. The diversity of bioactive proteins in Australian snake venoms. Mol. Cell. Proteomics 2007, 6((6)), 973–986, doi:10.1074/mcp.M600419-MCP200.
[14]
Fry, B.G. Structure-function properties of venom components from Australian elapids. Toxicon 1999, 37((1)), 11–32, doi:10.1016/S0041-0101(98)00125-1.
[15]
Ching, A.T.; Rocha, M.M.; Paes Leme, A.F.; Pimenta, D.C.; de Fatima, D.F.M.; Serrano, S.M.; Ho, P.L.; Junqueira-de-Azevedo, I.L. Some aspects of the venom proteome of the Colubridae snake Philodryas olfersii revealed from a Duvernoy's (venom) gland transcriptome. FEBS Lett. 2006, 580((18)), 4417–4422, doi:10.1016/j.febslet.2006.07.010.
[16]
Fry, B.G.; Roelants, K.; Norman, J.A. Tentacles of venom: toxic protein convergence in the Kingdom Animalia. J. Mol. Evol. 2009, 68((4)), 311–321.
[17]
Fry, B.G.; Roelants, K.; Winter, K.; Hodgson, W.C.; Griesman, L.; Kwok, H.F.; Scanlon, D.; Karas, J.; Shaw, C.; Wong, L.; Norman, J.A. Novel venom proteins produced by differential domain-expression strategies in beaded lizards and gila monsters (genus Heloderma). Mol. Biol. Evol. 2010, 27((2)), 395–407, doi:10.1093/molbev/msp251.
[18]
Fry, B.G.; Scheib, H.; de L M Junqueira de Azevedo, I.; Silva, D.A.; Casewell, N.R. Novel transcripts in the maxillary venom glands of advanced snakes. Toxicon 2012, 59((7–8)), 696–708, doi:10.1016/j.toxicon.2012.03.005.
[19]
Fry, B.G.; Scheib, H.; van der Weerd, L.; Young, B.; McNaughtan, J.; Ramjan, S.F.; Vidal, N.; Poelmann, R.E.; Norman, J.A. Evolution of an arsenal: structural and functional diversification of the venom system in the advanced snakes (Caenophidia). Mol. Cell. Proteomics 2008, 7((2)), 215–246.
[20]
Fry, B.G.; Undheim, E.A.; Ali, S.A.; Jackson, T.N.; Debono, J.; Scheib, H.; Ruder, T.; Morgenstern, D.; Cadwallader, L.; Whitehead, D.; Nabuurs, R.; van der Weerd, L.; Vidal, N.; Roelants, K.; Hendrikx, I.; Gonzalez, S.P.; Koludarov, I.; Jones, A.; King, G.F.; Antunes, A.; Sunagar, K. Squeezers and leaf-cutters: differential diversification and degeneration of the venom system in toxicoferan reptiles. Mol. Cell. Proteomics 2013, 12((7)), 1881–1899, doi:10.1074/mcp.M112.023143.
[21]
Fry, B.G.; Vidal, N.; Norman, J.A.; Vonk, F.J.; Scheib, H.; Ramjan, S.F.; Kuruppu, S.; Fung, K.; Hedges, S.B.; Richardson, M.K.; Hodgson, W.C.; Ignjatovic, V.; Summerhayes, R.; Kochva, E. Early evolution of the venom system in lizards and snakes. Nature 2006, 439((7076)), 584–588, doi:10.1038/nature04328.
Terrat, Y.; Sunagar, K.; Fry, B.G.; Jackson, T.N.; Scheib, H.; Fourmy, R.; Verdenaud, M.; Blanchet, G.; Antunes, A.; Ducancel, F. Atractaspis aterrima Toxins: The First Insight into the Molecular Evolution of Venom in Side-Stabbers. Toxins 2013, 5((11)), 1948–1964, doi:10.3390/toxins5111948.
[26]
Wagstaff, S.C.; Harrison, R.A. Venom gland EST analysis of the saw-scaled viper, Echis ocellatus, reveals novel alpha9beta1 integrin-binding motifs in venom metalloproteinases and a new group of putative toxins, renin-like aspartic proteas. Gene 2006, 377, 21–32.
[27]
Fry, B.G.; Wuster, W.; Kini, R.M.; Brusic, V.; Khan, A.; Venkataraman, D.; Rooney, A.P. Molecular evolution and phylogeny of elapid snake venom three-finger toxins. J. Mol. Evol. 2003, 57((1)), 110–129, doi:10.1007/s00239-003-2461-2.
[28]
St Pierre, L.; Fischer, H.; Adams, D.J.; Schenning, M.; Lavidis, N.; de Jersey, J.; Masci, P.P.; Lavin, M.F. Distinct activities of novel neurotoxins from Australian venomous snakes for nicotinic acetylcholine receptors. Cell. Mol. Life Sci. 2007, 64((21)), 2829–2840.
[29]
Sunagar, K.; Jackson, T.N.; Undheim, E.A.; Ali, S.A.; Antunes, A.; Fry, B.G. Three-Fingered RAVERs: Rapid Accumulation of Variations in Exposed Residues of Snake Venom Toxins. Toxins 2013, 5((11)), 2172–2208, doi:10.3390/toxins5112172.
[30]
Gong, N.; Armugam, A.; Jeyaseelan, K. Postsynaptic short-chain neurotoxins from Pseudonaja textilis. cDNA cloning, expression and protein characterization. Eur. J. Biochem. 1999, 265((3)), 982–989.
[31]
Gong, N.; Armugam, A.; Jeyaseelan, K. Molecular cloning, characterization and evolution of the gene encoding a new group of short-chain alpha-neurotoxins in an Australian elapid, Pseudonaja textilis. FEBS Lett. 2000, 473((3)), 303–310, doi:10.1016/S0014-5793(00)01549-0.
Koludarov, I.; Sunagar, K.; Undheim, E.A.; Jackson, T.N.; Ruder, T.; Whitehead, D.; Saucedo, A.C.; Mora, G.R.; Alagon, A.C.; King, G.; Antunes, A.; Fry, B.G. Structural and molecular diversification of the Anguimorpha lizard mandibular venom gland system in the arboreal species Abronia graminea. J. Mol. Evol. 2012, 75((5–6)), 168–183, doi:10.1007/s00239-012-9529-9.
[34]
Kozminsky-Atias, A.; Zilberberg, N. Molding the business end of neurotoxins by diversifying evolution. FASEB J. 2012, 26((2)), 576–586, doi:10.1096/fj.11-187179.
Ruder, T.; Sunagar, K.; Undheim, E.A.; Ali, S.A.; Wai, T.C.; Low, D.H.; Jackson, T.N.; King, G.F.; Antunes, A.; Fry, B.G. Molecular phylogeny and evolution of the proteins encoded by coleoid (cuttlefish, octopus, and squid) posterior venom glands. J. Mol. Evol. 2013, 76((4)), 192–204, doi:10.1007/s00239-013-9552-5.
[37]
Sunagar, K.; Johnson, W.E.; O'Brien, S.J.; Vasconcelos, V.; Antunes, A. Evolution of CRISPs associated with toxicoferan-reptilian venom and mammalian reproduction. Mol. Biol. Evol. 2012, 29((7)), 1807–1822, doi:10.1093/molbev/mss058.
[38]
Sunagar, K.; Fry, B.G.; Jackson, T.N.W.; Casewell, N.R.; Undheim, E.A.B.; Vidal, N.; Ali, S.A.; King, G.F.; Vasudevan, K.; Vasconcelos, V.; Antunes, A. Molecular Evolution of Vertebrate Neurotrophins: Co-Option of the Highly Conserved Nerve Growth Factor Gene into the Advanced Snake Venom Arsenal. PLoS One 2013, 8((11)), e81827.
[39]
Tian, C.; Yuan, Y.; Zhu, S. Positively selected sites of scorpion depressant toxins: possible roles in toxin functional divergence. Toxicon 2008, 51((4)), 555–562, doi:10.1016/j.toxicon.2007.11.010.
[40]
Zhu, S.; Bosmans, F.; Tytgat, J. Adaptive evolution of scorpion sodium channel toxins. J. Mol. Evol. 2004, 58((2)), 145–153, doi:10.1007/s00239-003-2534-2.
[41]
Xu, Q.; Wu, X.F.; Xia, Q.C.; Wang, K.Y. Cloning of a galactose-binding lectin from the venom of Trimeresurus stejnegeri. Biochem. J. 1999, 341((Pt. 3)), 733–737.
[42]
Earl, S.T.; Robson, J.; Trabi, M.; de Jersey, J.; Masci, P.P.; Lavin, M.F. Characterisation of a mannose-binding C-type lectin from Oxyuranus scutellatus snake venom. Biochimie 2011, 93((3)), 519–527.
[43]
Fry, B.G.; Wickramaratana, J.C.; Lemme, S.; Beuve, A.; Garbers, D.; Hodgson, W.C.; Alewood, P. Novel natriuretic peptides from the venom of the inland taipan (Oxyuranus microlepidotus): isolation, chemical and biological characterisation. Biochem. Biophys. Res. Commun. 2005, 327((4)), 1011–1015.
[44]
Schweitz, H.; Vigne, P.; Moinier, D.; Frelin, C.; Lazdunski, M. A new member of the natriuretic peptide family is present in the venom of the green mamba (Dendroaspis angusticeps). J. Biol. Chem. 1992, 267((20)), 13928–13932.
Vonk, F.J.; Jackson, K.; Doley, R.; Madaras, F.; Mirtschin, P.J.; Vidal, N. Snake venom: From fieldwork to the clinic: Recent insights into snake biology, together with new technology allowing high-throughput screening of venom, bring new hope for drug discovery. Bioessays 2011, 33((4)), 269–279, doi:10.1002/bies.201000117.
[47]
St Pierre, L.; Flight, S.; Masci, P.P.; Hanchard, K.J.; Lewis, R.J.; Alewood, P.F.; de Jersey, J.; Lavin, M.F. Cloning and characterisation of natriuretic peptides from the venom glands of Australian elapids. Biochimie 2006, 88((12)), 1923–1931.
[48]
St Pierre, L.; Woods, R.; Earl, S.; Masci, P.P.; Lavin, M.F. Identification and analysis of venom gland-specific genes from the coastal taipan (Oxyuranus scutellatus) and related species. Cell. Mol. Life Sci. 2005, 62((22)), 2679–2693, doi:10.1007/s00018-005-5384-9.
[49]
Akashi, Y.J.; Springer, J.; Lainscak, M.; Anker, S.D. Atrial natriuretic peptide and related peptides. Clin. Chem. Lab. Med. 2007, 45((10)), 1259–1267.
[50]
Amininasab, M.; Elmi, M.M.; Endlich, N.; Endlich, K.; Parekh, N.; Naderi-Manesh, H.; Schaller, J.; Mostafavi, H.; Sattler, M.; Sarbolouki, M.N.; Muhle-Goll, C. Functional and structural characterization of a novel member of the natriuretic family of peptides from the venom of Pseudocerastes persicus. FEBS Lett. 2004, 557((1–3)), 104–108, doi:10.1016/S0014-5793(03)01455-8.
[51]
Fry, B.G.; Wuster, W. Assembling an arsenal: origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences. Mol. Biol. Evol. 2004, 21((5)), 870–883.
[52]
Chen, H.H.; Lainchbury, J.G.; Burnett, J.C., Jr. Natriuretic peptide receptors and neutral endopeptidase in mediating the renal actions of a new therapeutic synthetic natriuretic peptide dendroaspis natriuretic peptide. J. Am. Coll. Cardiol. 2002, 40((6)), 1186–1191, doi:10.1016/S0735-1097(02)02127-7.
[53]
Da Silva, S.L.; Dias-Junior, C.A.; Baldasso, P.A.; Damico, D.C.; Carvalho, B.M.; Garanto, A.; Acosta, G.; Oliveira, E.; Albericio, F.; Soares, A.M.; Marangoni, S.; Resende, R.R. Vascular effects and electrolyte homeostasis of the natriuretic peptide isolated from Crotalus oreganus abyssus (North American Grand Canyon rattlesnake) venom. Peptides 2012, 36((2)), 206–212, doi:10.1016/j.peptides.2012.05.005.
[54]
Quinton, L.; Gilles, N.; Smargiasso, N.; Kiehne, A.; De Pauw, E. An unusual family of glycosylated peptides isolated from Dendroaspis angusticeps venom and characterized by combination of collision induced and electron transfer dissociation. J. Am. Soc. Mass Spectrom. 2011, 22((11)), 1891–1897, doi:10.1007/s13361-011-0210-0.
Kuruppu, S.; Fry, B.G.; Hodgson, W.C. Presynaptic neuromuscular activity of venom from the brown-headed snake (Glyphodon tristis). Toxicon 2005, 45((3)), 383–388, doi:10.1016/j.toxicon.2004.11.016.
[57]
Fry, B.G.; Wuster, W.; Ryan Ramjan, S.F.; Jackson, T.; Martelli, P.; Kini, R.M. Analysis of Colubroidea snake venoms by liquid chromatography with mass spectrometry: evolutionary and toxinological implications. Rapid Commun. Mass Spectrom. 2003, 17((18)), 2047–2062, doi:10.1002/rcm.1148.
[58]
Kuruppu, S.; Robinson, S.; Hodgson, W.C.; Fry, B.G. The in vitro neurotoxic and myotoxic effects of the venom from the Suta genus (curl snakes) of elapid snakes. Basic Clin. Pharmacol. Toxicol. 2007, 101((6)), 407–410, doi:10.1111/j.1742-7843.2007.00131.x.
[59]
Fohlman, J.; Lind, P.; Eaker, D. Taipoxin, an extremely potent presynaptic snake venom neurotoxin. Elucidation of the primary structure of the acidic carbohydrate-containing taipoxin-subunit, a prophospholipase homolog. FEBS Lett. 1977, 84((2)), 367–371.
[60]
Blacklow, B.; Escoubas, P.; Nicholson, G.M. Characterisation of the heterotrimeric presynaptic phospholipase A(2) neurotoxin complex from the venom of the common death adder (Acanthophis antarcticus). Biochem. Pharmacol. 2010, 80((2)), 277–287, doi:10.1016/j.bcp.2010.03.030.
[61]
Blacklow, B.; Konstantakopoulos, N.; Hodgson, W.C.; Nicholson, G.M. Presence of presynaptic neurotoxin complexes in the venoms of Australo-Papuan death adders (Acanthophis spp.). Toxicon 2010, 55((6)), 1171–1180, doi:10.1016/j.toxicon.2010.01.007.
[62]
Chaisakul, J.; Konstantakopoulos, N.; Smith, A.I.; Hodgson, W.C. Isolation and characterisation of P-EPTX-Ap1a and P-EPTX-Ar1a: pre-synaptic neurotoxins from the venom of the northern (Acanthophis praelongus) and Irian Jayan (Acanthophis rugosus) death adders. Biochem. Pharmacol. 2010, 80((6)), 895–902.
[63]
Chaisakul, J.; Parkington, H.C.; Isbister, G.K.; Konstantakopoulos, N.; Hodgson, W.C. Differential myotoxic and cytotoxic activities of pre-synaptic neurotoxins from Papuan taipan (Oxyuranus scutellatus) and Irian Jayan death adder (Acanthophis rugosus) venoms. Basic Clin. Pharmacol. Toxicol. 2013, 112((5)), 325–334, doi:10.1111/bcpt.12048.
[64]
Fry, B.G.; Wickramaratna, J.C.; Hodgson, W.C.; Alewood, P.F.; Kini, R.M.; Ho, H.; Wuster, W. Electrospray liquid chromatography/mass spectrometry fingerprinting of Acanthophis (death adder) venoms: taxonomic and toxinological implications. Rapid Commun. Mass Spectrom. 2002, 16((6)), 600–608.
[65]
Doley, R.; Tram, N.N.; Reza, M.A.; Kini, R.M. Unusual accelerated rate of deletions and insertions in toxin genes in the venom glands of the pygmy copperhead (Austrelaps labialis) from Kangaroo island. BMC Evol. Biol. 2008, 8, 70, doi:10.1186/1471-2148-8-70.
[66]
Marlor, C.W.; Delaria, K.A.; Davis, G.; Muller, D.K.; Greve, J.M.; Tamburini, P.P. Identification and cloning of human placental bikunin, a novel serine protease inhibitor containing two Kunitz domains. J. Biol. Chem. 1997, 272((18)), 12202–12208.
[67]
Doley, R.; Pahari, S.; Reza, M.A.; Mackessy, S.P.; Kini, R.M. The Gene Structure and Evolution of ku-wap-fusin (Kunitz Waprin Fusion Protein), a Novel Evolutionary Intermediate of the Kunitz Serine Protease Inhibitors and Waprins from Sistrurus catenatus (Massasauga Rattlesnake) Venom Glands. Open Evol.J. 2010, 4, 31–41.
[68]
St Pierre, L.; Earl, S.T.; Filippovich, I.; Sorokina, N.; Masci, P.P.; De Jersey, J.; Lavin, M.F. Common evolution of waprin and kunitz-like toxin families in Australian venomous snakes. Cell. Mol. Life Sci. 2008, 65((24)), 4039–4054, doi:10.1007/s00018-008-8573-5.
[69]
Francischetti, I.M.; My-Pham, V.; Harrison, J.; Garfield, M.K.; Ribeiro, J.M. Bitis. gabonica (Gaboon viper) snake venom gland: toward a catalog for the full-length transcripts (cDNA) and proteins. Gene 2004, 337, 55–69.
[70]
Nair, D.G.; Fry, B.G.; Alewood, P.; Kumar, P.P.; Kini, R.M. Antimicrobial activity of omwaprin, a new member of the waprin family of snake venom proteins. Biochem. J. 2007, 402((1)), 93–104, doi:10.1042/BJ20060318.
[71]
Isbister, G.K.; Dawson, A.H.; Whyte, I.M. Two cases of bites by the black-bellied swamp snake (Hemiaspis signata). Toxicon 2002, 40((3)), 317–319, doi:10.1016/S0041-0101(01)00221-5.
[72]
Isbister, G.K.; White, J.; Currie, B.J.; O'Leary, M.A.; Brown, S.G. Clinical effects and treatment of envenoming by Hoplocephalus spp. snakes in Australia: Australian Snakebite Project (ASP-12). Toxicon 2011, 58((8)), 634–640, doi:10.1016/j.toxicon.2011.09.013.
[73]
White, J.; Williams, V.; Passehl, J.H. The five-ringed brown snake, Pseudonaja modesta (Gunther): report of a bite and comments on its venom. Med. J. Aust. 1987, 147((11–12)), 603–605.
[74]
Reza, M.A.; Minh Le, T.N.; Swarup, S.; Manjunatha Kini, R. Molecular evolution caught in action: gene duplication and evolution of molecular isoforms of prothrombin activators in Pseudonaja textilis (brown snake). J. Thromb. Haemost. 2006, 4((6)), 1346–1353.
[75]
Sanders, K.L.; Lee, M.S.; Leys, R.; Foster, R.; Keogh, J.S. Molecular phylogeny and divergence dates for Australasian elapids and sea snakes (Hydrophiinae): evidence from seven genes for rapid evolutionary radiations. J. Evol. Biol. 2008, 21((3)), 682–695.
[76]
Isbister, G.K.; Scorgie, F.E.; O'Leary, M.A.; Seldon, M.; Brown, S.G.; Lincz, L.F. Factor deficiencies in venom-induced consumption coagulopathy resulting from Australian elapid envenomation: Australian Snakebite Project (ASP-10). J. Thromb. Haemost. 2010, 8((11)), 2504–2513, doi:10.1111/j.1538-7836.2010.04050.x.
[77]
Fry, B.G.; Casewell, N.R.; Wuster, W.; Vidal, N.; Young, B.; Jackson, T.N. The structural and functional diversification of the Toxicofera reptile venom system. Toxicon 2012, 60((4)), 434–448.
[78]
Filippovich, I.; Sorokina, N.; St Pierre, L.; Flight, S.; de Jersey, J.; Perry, N.; Masci, P.P.; Lavin, M.F. Cloning and functional expression of venom prothrombin activator protease from Pseudonaja textilis with whole blood procoagulant activity. Br. J. Haematol. 2005, 131((2)), 237–246.
[79]
Bos, M.H.; Boltz, M.; St Pierre, L.; Masci, P.P.; de Jersey, J.; Lavin, M.F.; Camire, R.M. Venom factor V from the common brown snake escapes hemostatic regulation through procoagulant adaptations. Blood 2009, 114((3)).
[80]
Shine, R. Constraints, allometry, and adaptation-food-habits and reproductive-biology of australian brownsnakes (Pseudonaja, Elapidae). Herpetologica 1989, 45((2)), 195–207.
[81]
Kulkeaw, K.; Chaicumpa, W.; Sakolvaree, Y.; Tongtawe, P.; Tapchaisri, P. Proteome and immunome of the venom of the Thai cobra, Naja kaouthia. Toxicon 2007, 49((7)), 1026–1041, doi:10.1016/j.toxicon.2007.01.019.
Gibbs, H.L.; Sanz, L.; Sovic, M.G.; Calvete, J.J. Phylogeny-based comparative analysis of venom proteome variation in a clade of rattlesnakes (Sistrurus sp.). PLoS One 2013, 8((6)), e67220.
[84]
Pawlak, J.; Mackessy, S.P.; Fry, B.G.; Bhatia, M.; Mourier, G.; Fruchart-Gaillard, C.; Servent, D.; Menez, R.; Stura, E.; Menez, A.; Kini, R.M. Denmotoxin, a three-finger toxin from the colubrid snake Boiga dendrophila (Mangrove Catsnake) with bird-specific activity. J. Biol. Chem. 2006, 281((39)), 29030–29041, doi:10.1074/jbc.M605850200.
[85]
Shine, R. Reproduction, feeding and growth in the australian burrowing snake Vermicella annulata. J. Herpetol. 1980, 14((1)), 71–77, doi:10.2307/1563878.
[86]
Durban, J.; Perez, A.; Sanz, L.; Gomez, A.; Bonilla, F.; Rodriguez, S.; Chacon, D.; Sasa, M.; Angulo, Y.; Gutierrez, J.M.; Calvete, J.J. Integrated "omics" profiling indicates that miRNAs are modulators of the ontogenetic venom composition shift in the Central American rattlesnake, Crotalus simus simus. BMC Genomics 2013, 14, 234, doi:10.1186/1471-2164-14-234.
[87]
Li, M.; Fry, B.G.; Kini, R.M. Eggs-only diet: its implications for the toxin profile changes and ecology of the marbled sea snake (Aipysurus eydouxii). J. Mol. Evol. 2005, 60((1)), 81–89, doi:10.1007/s00239-004-0138-0.
[88]
Li, M.; Fry, B.G.; Kini, R.M. Putting the brakes on snake venom evolution: the unique molecular evolutionary patterns of Aipysurus eydouxii (Marbled sea snake) phospholipase A2 toxins. Mol. Biol. Evol. 2005, 22((4)), 934–941, doi:10.1093/molbev/msi077.
[89]
Scanlon, J.D.; Shine, R. Dentition and diet in snakes - adaptations to oophagy in the Australian elapid genus Simoselaps. J. Zool. 1988, 216, 519–528, doi:10.1111/j.1469-7998.1988.tb02448.x.
[90]
Shine, R. Comparative ecology of 3 australian snake species of the genus Cacophis (Serpentes, Elapidae). Copeia 1980, 4, 831–838, doi:10.2307/1444462.
[91]
Shine, R. Ecology of Australian elapid snakes of the genera Furina and Glyphodon. J. Herpetol. 1981, 15((2)), 219–224, doi:10.2307/1563384.
[92]
Shine, R. Arboreality in snakes: ecology of the Australian elapid genus Hoplocephalus. Copeia 1983, 1983((1)), 198–205, doi:10.2307/1444714.
[93]
Shine, R. Reproductive-biology and food-habits of the Australian elapid snakes of the genus Cryptophis. J. Herpetol. 1984, 18((1)), 33–39.
[94]
Shine, R. Food-habits and reproductive-biology of australian snakes of the genus Hemiaspis (Elapidae). J. Herpetol. 1987, 21((1)), 71–74.
[95]
Shine, R. Food-habits and reproductive-biology of small australian snakes of the genera Unechis and Suta (elapidae). J. Herpetol. 1988, 22((3)), 307–315.
[96]
Goldman, N.; Yang, Z. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol. Biol. Evol. 1994, 11((5)), 725–736.
[97]
Yang, Z. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol. Biol. Evol. 1998, 15((5)), 568–573.
[98]
Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007, 24((8)), 1586–1591.
[99]
Nielsen, R.; Yang, Z. Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 1998, 148((3)), 929–936.
[100]
Yang, Z.; Wong, W.S.; Nielsen, R. Bayes empirical bayes inference of amino acid sites under positive selection. Mol. Biol. Evol. 2005, 22((4)), 1107–1118.
Kosakovsky Pond, S.L.; Murrell, B.; Fourment, M.; Frost, S.D.; Delport, W.; Scheffler, K. A random effects branch-site model for detecting episodic diversifying selection. Mol. Biol. Evol. 2011, 28((11)), 3033–3043.
[106]
Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59((3)), 307–321.
[107]
Kelley, L.A.; Sternberg, M.J. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 2009, 4((3)), 363–371, doi:10.1038/nprot.2009.2.
[108]
DeLano, W.L. The PyMOL Molecular Graphics System; version 1.5; Schr?dinger, LLC: Camberley, UK, 2002.
[109]
Armon, A.; Graur, D.; Ben-Tal, N. ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information. J. Mol. Biol. 2001, 307((1)), 447–463, doi:10.1006/jmbi.2000.4474.
[110]
Steuten, J.; Winkel, K.; Carroll, T.; Williamson, N.A.; Ignjatovic, V.; Fung, K.; Purcell, A.W.; Fry, B.G. The molecular basis of cross-reactivity in the Australian Snake Venom Detection Kit (SVDK). Toxicon 2007, 50((8)), 1041–1052, doi:10.1016/j.toxicon.2007.07.023.