全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Toxins  2013 

Towards Clinical Applications of Anti-endotoxin Antibodies; A Re-appraisal of the Disconnect

DOI: 10.3390/toxins5122589

Keywords: endotoxin, endotoxemia, anti-endotoxin antibodies, sepsis, polymyxin, Gram-negative bacteria

Full-Text   Cite this paper   Add to My Lib

Abstract:

Endotoxin is a potent mediator of a broad range of patho-physiological effects in humans. It is present in all Gram negative (GN) bacteria. It would be expected that anti-endotoxin therapies, whether antibody based or not, would have an important adjuvant therapeutic role along with antibiotics and other supportive therapies for GN infections. Indeed there is an extensive literature relating to both pre-clinical and clinical studies of anti-endotoxin antibodies. However, the extent of disconnect between the generally successful pre-clinical studies versus the failures of the numerous large clinical trials of antibody based and other anti-endotoxin therapies is under-appreciated and unexplained. Seeking a reconciliation of this disconnect is not an abstract academic question as clinical trials of interventions to reduce levels of endotoxemia levels are ongoing. The aim of this review is to examine new insights into the complex relationship between endotoxemia and sepsis in an attempt to bridge this disconnect. Several new factors to consider in this reappraisal include the frequency and types of GN bacteremia and the underlying mortality risk in the various study populations. For a range of reasons, endotoxemia can no longer be considered as a single entity. There are old clinical trials which warrant a re-appraisal in light of these recent advances in the understanding of the structure-function relationship of endotoxin. Fundamentally however, the disconnect not only remains, it has enlarged.

References

[1]  Braude, A.I. Bacterial endotoxins. Sci. Am. 1964, 210, 36–45, doi:10.1038/scientificamerican0364-36.
[2]  Rietschel, E.T.; Brade, H. Bacterial endotoxins. Sci. Am. 1992, 267, 54–61, doi:10.1038/scientificamerican0892-54.
[3]  Raetz, C.R. Bacterial endotoxins extraordinary lipids that activate eucaryotic signal transduction. J. Bacteriol. 1993, 175, 5745–5753.
[4]  Hurley, J.C. Endotoxemia: Concordance with Gram Negative Bacteremia and Association with Outcome. D. Med. Sci. Thesis; University of Melbourne: Melbourne, Australia, September 2013. Available online: http://repository.unimelb.edu.au/10187/17991 (accessed on 22 October 2013).
[5]  Hurley, J.C.; Levin, J. Relevance of Endotoxin Detection in Sepsis. In Endotoxin in Health and Disease; Brade, H., Stefanie Vogel, S.O., Morrison, D., Eds.; Marcel Dekker Limited: New York, NY, USA, 1999; pp. 841–854.
[6]  Opal, S.M. The clinical relevance of endotoxin in human sepsis: A critical analysis. J. Endotoxin. Res. 2002, 8, 473–476.
[7]  Corriveau, C.C.; Danner, R.L. Antiendotoxin therapies for septic shock. Infect. Agents Dis. 1993, 2, 44–52.
[8]  Opal, S.M.; Gluck, T. Endotoxin as a drug target. Crit. Care Med. 2003, 31 (Suppl. 1), S57–S64, doi:10.1097/00003246-200301001-00009.
[9]  Corriveau, C.C.; Danner, R.L. Endotoxin as a therapeutic target in septic shock. Infect. Agents Dis. 1993, 2, 35–43.
[10]  Hurley, J.C. Antibiotic induced release of endotoxin: A therapeutic paradox. Drug Saf. 1995, 12, 183–195, doi:10.2165/00002018-199512030-00004.
[11]  Hitchcock, P.J.; Leive, L.; Makela, P.H.; Rietschel, E.T.; Strittmatter, W.; Morrison, D.C. Lipopolysaccharide nomenclature—past, present, and future. J. Bacteriol. 1986, 166, 699–705.
[12]  Kotani, S.; Takada, H.; Tsujimoto, M.; Ogawa, T.; Takahashi, I.; Ikeda, T.; Otsuka, K.; Shimauchi, H.; Kasai, N.; Mashimo, J.; et al. Synthetic lipid A with endotoxic and related biological activities comparable to those of a natural lipid A from an Escherichia coli re-mutant. Infect. Immun. 1985, 49, 225–237.
[13]  Maeshima, N.; Fernandez, R.C. Recognition of lipid A variants by the TLR4-MD-2 receptor complex. Front. Cell. Infect. Microbiol. 2013, 3, 3.
[14]  Trent, M.S.; Stead, C.M.; Tran, A.X.; Hankins, J.V. Diversity of endotoxin and its impact on pathogenesis. J. Endotoxin Res. 2006, 12, 205–223, doi:10.1179/096805106X118825.
[15]  Raetz, C.R.; Reynolds, C.M.; Trent, M.S.; Bishop, R.E. Lipid A modification systems in gram-negative bacteria. Annu. Rev. Biochem. 2007, 76, 295–329, doi:10.1146/annurev.biochem.76.010307.145803.
[16]  Morrison, D.C.; Ryan, J.L. Endotoxins and disease mechanisms. Annu. Rev. Med. 1987, 38, 417–432, doi:10.1146/annurev.me.38.020187.002221.
[17]  Tesh, V.L.; Vukajlovich, S.W.; Morrison, D.C. Endotoxin interactions with serum proteins relationship to biological activity. Prog. Clin. Biol. Res. 1988, 272, 47–62.
[18]  Hurley, J.C.; Tosolini, F.A.; Louis, W.J. Quantitative Limulus lysate assay for endotoxin and the effect of plasma. J. Clin. Pathol. 1991, 44, 849–854, doi:10.1136/jcp.44.10.849.
[19]  Beller, F.K.; Debrovner, C.H.; Douglas, G.W. Potentiation of the lethal effect of endotoxin by heterologous plasma. J. Exp. Med. 1963, 118, 245–256, doi:10.1084/jem.118.2.245.
[20]  Andra, J.; Gutsmann, T.; Muller, M.; Schromm, A.B. Interactions between lipid A and serum proteins. Adv. Exp. Med. Biol. 2009, 667, 39–51, doi:10.1007/978-1-4419-1603-7_4.
[21]  Cross, A.S.; Sadoff, J.C.; Kelly, N.; Bemton, E.; Gemski, P. Pre-treatment with recombinant murine tumour necrosis factor and murine inter-leukin 1 protects mice from lethal infection. J. Exp. Med. 1989, 169, 2021–2027, doi:10.1084/jem.169.6.2021.
[22]  Eden, C.S.; Shahin, R.; Briles, D. Host resistance to mucosal gram-negative infection. Susceptibility of lipopolysaccharide nonresponder mice. J. Immunol. 1988, 140, 3180–3185.
[23]  Hochstein, H.D.; Fitzgerald, E.A.; McMahon, F.G.; Vargas, R. Properties of US standard endotoxin (EC-5) in human male volunteers. J. Endotoxin Res. 1994, 1, 52–56.
[24]  Rietschel, E.T.; Kirikae, T.; Schade, F.U.; Mamat, U.; Schmidt, G.; Loppnow, H.; Ulmer, A.J.; Zahringer, U.; Seydel, U.; Di Padova, F.; et al. Bacterial endotoxin: Molecular relationships of structure to activity and function. FASEB J. 1994, 8, 217–225.
[25]  Suffredini, A.F.; Fromm, R.E.; Parker, M.M.; Brenner, M.; Kovacs, J.A.; Wesley, R.A.; Parrillo, J.E. The cardiovascular response of normal humans to the administration of endotoxin. N. Engl. J. Med. 1989, 321, 280–287.
[26]  Mileski, W.J.; Winn, R.K.; Harlan, J.M.; Rice, C.L. Sensitivity to endotoxin in rabbits is increased after hemorrhagic shock. J. Appl. Physiol. 1992, 73, 1146–1149.
[27]  Noshima, S.; Noda, H.; Herndon, D.N.; Traber, L.D.; Traber, D.L. Left ventricular performance during continuous endotoxin-induced hyperdynamic endotoxemia in sheep. J. Appl. Physiol. 1993, 74, 1528–1533.
[28]  Bahrami, S.; Redl, H.; Leichtfried, G.; Yu, Y.; Schlag, G. Similar cytokine but different coagulation responses to lipopolysaccharide injection in D-galactosamine-sensitized versus nonsensitized rats. Infect. Immun. 1994, 62, 99–105.
[29]  Holzer, K.; Thiel, M.; Moritz, S.; Kreimeier, U.; Messmer, K. Expression of adhesion molecules on circulating PMN during hyperdynamic endotoxemia. J. Appl. Physiol. 1996, 81, 341–348.
[30]  Levi, M.; ten Cate, H.; Bauer, K.A.; van der Poll, T.; Edgington, T.S.; Buller, H.R.; van Deventer, S.J.; Hack, C.E.; ten Cate, J.W.; Rosenberg, R.D. Inhibition of endotoxin-induced activation of coagulation and fibrinolysis by pentoxifylline or by a monoclonal anti-tissue factor antibody in chimpanzees. J. Clin. Investig. 1994, 93, 114–120.
[31]  Kneidinger, R.; Bahrami, S.; Redl, H.; Schlag, G. Comparison of endothelial acitavion during endotoxic and post-traumatic conditions by serum analysis of soluble E-selectin in non-human primates. J. Lab. Clin. Med. 1996, 128, 515–519, doi:10.1016/S0022-2143(96)90049-9.
[32]  Redl, H.; Schlag, G.; Bahrami, S. Endotoxemia in Primate Models. In Endotoxin in Health and Disease; Brade, H., Stefanie Vogel, S.O., Morrison, D., Eds.; Marcel Dekker Limited: New York, NY, USA, 1999; pp. 795–808.
[33]  Van der Poll, T.; Levi, M.; van Deventer, S.J.; ten Cate, H.; Haagmans, B.L.; Biemond, B.J.; Buller, H.R.; Hack, C.E.; ten Cate, J.W. Differential effects of anti-tumor necrosis factor monoclonal antibodies on systemic inflammatory responses in experimental endotoxemia in chimpanzees. Blood 1994, 83, 446–451.
[34]  West, M.A.; Heagy, W. Endotoxin tolerance: A review. Crit. Care Med. 2002, 30 (Suppl. 1), S64–S73, doi:10.1097/00003246-200201001-00009.
[35]  Greisman, S.E.; Hornick, R.B. Mechanisms of endotoxin tolerance with special reference to man. J. Infect. Dis. 1973, 128 (Suppl.), 265–276, doi:10.1093/infdis/128.Supplement_1.S265.
[36]  Biswas, S.K.; Lopez-Collazo, E. Endotoxin tolerance: New mechanisms, molecules and clinical significance. Trends Immunol. 2009, 30, 475–487, doi:10.1016/j.it.2009.07.009.
[37]  Cross, A.S. Endotoxin tolerance-current concepts in historical perspective. J. Endotoxin Res. 2002, 8, 83–98.
[38]  Greisman, S.E.; Hornick, R.B.; Wagner, H.N., Jr.; Woodward, W.E.; Woodward, T.E. The role of endotoxin during typhoid fever and tularemia in man. IV. The integrity of the endotoxin tolerance mechanisms during infection. J. Clin. Investig. 1969, 48, 613–629, doi:10.1172/JCI106020.
[39]  Greisman, S.E.; Wagner, H.N.; Iio, M.; Hornick, R.B. Mechanisms of endotoxin tolerance. II. Relationship between endotoxin tolerance and reticuloendothelial system phagocytic activity in man. J. Exp. Med. 1964, 119, 241–264.
[40]  Greisman, S.E.; Young, E.J.; DuBuy, B. Mechanisms of endotoxin tolerance. VIII. Specificity of serum transfer. J. Immunol. 1973, 111, 1349–1360.
[41]  Pechous, R.D.; McCarthy, T.R.; Zahrt, T.C. Working toward the future: Insights into Francisella tularensis pathogenesis and vaccine development. Microbiol. Mol. Biol. Rev. 2009, 73, 684–711, doi:10.1128/MMBR.00028-09.
[42]  Erridge, C.; Bennett-Guerrero, E.; Poxton, I.R. Structure and function of lipopolysaccharides. Microbes Infect. 2002, 4, 837–851, doi:10.1016/S1286-4579(02)01604-0.
[43]  Caroff, M.; Karibian, D.; Cavaillon, J.M.; Haeffner-Cavaillon, N. Structural and functional analyses of bacterial lipopolysaccharides. Microbes Infect. 2002, 4, 915–926, doi:10.1016/S1286-4579(02)01612-X.
[44]  Mueller, M.; Lindner, B.; Dedrick, R.; Schromm, A.B.; Seydel, U. Endotoxin: Physical requirements for cell activation. J. Endotoxin Res. 2005, 11, 299–303.
[45]  Shnyra, A.; Hultenby, K.; Lindberg, A.A. Role of the physical state of Salmonella lipopolysaccharide in expression of biological and endotoxic properties. Infect. Immun. 1993, 61, 5351–5360.
[46]  Kato, N. Crystallization and electron microscopy of bacterial lipopolysaccharide. Micron 1993, 24, 91–114, doi:10.1016/0968-4328(93)90017-U.
[47]  Komuro, T.; Murai, T.; Kawasaki, H. Effect of sonication on the dispersion state of lipopolysaccharide and its pyrogenicity in rabbits. Chem. Pharm. Bull. (Tokyo) 1987, 35, 4946–4952.
[48]  Opal, S.M.; Palardy, J.E.; Marra, M.N.; McKelligon, B.M.; Scott, R.W.; Fisher, C.J. Relative concentrations of endotoxin-binding proteins in body fluids during infection. Lancet 1994, 344, 429–431, doi:10.1016/S0140-6736(94)91767-1.
[49]  Opal, S.M.; Scannon, P.J.; Vincent, J.L.; White, M.; Carroll, S.F.; Palardy, J.E.; Parejo, N.A.; Pribble, J.P.; Lemke, J.H. Relationship between plasma levels of lipopolysaccharide (LPS) and LPS-binding protein in patients with severe sepsis and septic shock. J. Infect. Dis. 1999, 180, 1584–1589, doi:10.1086/315093.
[50]  Gutsmann, T.; Razquin-Olazarán, I.; Kowalski, I.; Kaconis, Y.; Howe, J.; Bartels, R.; Brandenburg, K. New antiseptic peptides to protect against endotoxin-mediated shock. Antimicrob. Agents Chemother. 2010, 54, 3817–3824, doi:10.1128/AAC.00534-10.
[51]  Schuerholz, T.; Brandenburg, K.; Marx, G. Antimicrobial peptides and their potential application in inflammation and sepsis. Crit. Care 2012, 16, 207, doi:10.1186/cc11220.
[52]  Brandenburg, K.; Andr?, J.; Garidel, P.; Gutsmann, T. Peptide-based treatment of sepsis. Appl. Microbiol. Biotechnol. 2011, 90, 799–808, doi:10.1007/s00253-011-3185-7.
[53]  Munford, R.S.; Varley, A.W. Shield as signal: Lipopolysaccharides and the evolution of immunity to gram-negative bacteria. PLoS Pathog. 2006, 2, e67, doi:10.1371/journal.ppat.0020067.
[54]  Munford, R.S. Sensing gram-negative bacterial lipopolysaccharides: A human disease determinant? Infect. Immun. 2008, 76, 454–465, doi:10.1128/IAI.00939-07.
[55]  Dziarski, R. Deadly plague versus mild-mannered TLR4. Nat. Immunol. 2006, 7, 1017–1019, doi:10.1038/ni1006-1017.
[56]  Miller, S.I.; Ernst, R.K.; Bader, M.W. LPS, TLR4 and infectious disease diversity. Nat. Rev. Microbiol. 2005, 3, 36–46, doi:10.1038/nrmicro1068.
[57]  Park, B.S.; Song, D.H.; Kim, H.M.; Choi, B.S.; Lee, H.; Lee, J.O. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 2009, 458, 1191–1195, doi:10.1038/nature07830.
[58]  Hurley, J.C. Sepsis management and anti-endotoxin therapy after nebacumab; A reappraisal. (leading article). Drugs 1994, 47, 855–861, doi:10.2165/00003495-199447060-00001.
[59]  Hurley, J.C. Endotoxemia and novel therapies for the treatment of sepsis. Exp. Opin. Investig. Drugs 1995, 4, 163–174, doi:10.1517/13543784.4.3.163.
[60]  Riedemann, N.C.; Guo, R.F.; Ward, P.A. The enigma of sepsis. J. Clin. Investig. 2003, 112, 460–467.
[61]  Carlet, J.; Cohen, J.; Calandra, T.; Opal, S.M.; Masur, H. Sepsis: Time to reconsider the concept. Crit. Care Med. 2008, 36, 964–966, doi:10.1097/CCM.0B013E318165B886.
[62]  Vincent, J.L.; Martinez, E.O.; Silva, E. Evolving concepts in sepsis definitions. Crit. Care Clin. 2009, 25, 665–675, doi:10.1016/j.ccc.2009.07.001.
[63]  Thomas, L. Germs. N. Engl. J. Med. 1972, 287, 553–555, doi:10.1056/NEJM197209142871109.
[64]  Horn, D.L.; Morrison, D.C.; Opal, S.M.; Silverstein, R.; Visvanathan, K.; Zabriskie, J.B. What are the microbial components implicated in the pathogenesis of sepsis? Report on a symposium. Clin. Infect. Dis. 2000, 31, 851–858, doi:10.1086/318127.
[65]  Bone, R.C.; Balk, R.A.; Cerra, F.B.; Dellinger, R.P.; Fein, A.M.; Knaus, W.A.; Schein, R.M.; Sibbald, W.J. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992, 101, 1644–1655.
[66]  Annane, D.; Aegerter, P.; Jars-Guincestre, M.C.; Guidet, B. Current epidemiology of septic shock: The CUB-rea network. Am. J. Respir. Crit. Care Med. 2003, 168, 165–172, doi:10.1164/rccm.2201087.
[67]  Brun-Buisson, C.; Doyon, F.; Carlet, J.; Dellamonica, P.; Gouin, F.; Lepoutre, A.; Mercier, J.C.; Offenstadt, G.; Regnier, B. Incidence, risk factors, and outcome of severe sepsis and septic shock in adults. A multicenter prospective study in intensive care units. French ICU Group for Severe Sepsis. JAMA 1995, 274, 968–974, doi:10.1001/jama.1995.03530120060042.
[68]  Rangel-Frausto, M.S.; Pittet, D.; Costigan, M.; Hwang, T.; Davis, C.S.; Wenzel, R.P. The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study. JAMA 1995, 273, 117–123, doi:10.1001/jama.1995.03520260039030.
[69]  Sands, K.E.; Bates, D.W.; Lanken, P.N.; Graman, P.S.; Hibberd, P.L.; Kahn, K.L.; Parsonnet, J.; Panzer, R.; Orav, E.J.; Snydman, D.R.; et al. Epidemiology of sepsis syndrome in 8 academic medical centers. JAMA 1997, 278, 234–240, doi:10.1001/jama.1997.03550030074038.
[70]  Bates, D.W.; Lee, T.H. Projected impact of monoclonal anti-endotoxin antibody therapy. Arch. Intern. Med. 1994, 154, 1241–1249, doi:10.1001/archinte.1994.00420110085010.
[71]  James, S.K.; Armstrong, P.; Barnathan, E.; Califf, R.; Lindahl, B.; Siegbahn, A.; Simoons, M.L.; Topol, E.J.; Venge, P.; Wallentin, L. GUSTO-IV-ACS Investigators. Troponin and C-reactive protein have different relations to subsequent mortality and myocardial infarction after acute coronary syndrome. GUSTO-IV sub-study. J. Am. Coll. Cardiol. 2003, 41, 916, doi:10.1016/S0735-1097(02)02969-8.
[72]  Hurley, J.C. Endotoxemia of concordance with gram-negative bacteremia: A meta—analysis using ROC curves. Arch. Pathol. Lab. Med. 2000, 124, 1157–1164.
[73]  Hurley, J.C. Does gram-negative bacteremia occur without endotoxemia? A meta-analysis using hierarchical summary ROC curves. Eur. J. Clin. Microbiol. Infect. Dis. 2009, 29, 207–215, doi:10.1007/s10096-009-0841-2.
[74]  Brandtzaeg, P.; Kierulf, P.; Gaustad, P.; Skulberg, A.; Bruun, J.N.; Halvorsen, S.; Sorensen, E. Plasma endotoxin as a predictor of multiple organ failure and death in systemic meningococcal disease. J. Infect. Dis. 1989, 159, 195–204, doi:10.1093/infdis/159.2.195.
[75]  Brock-Utne, J.G.; Gaffin, S.L.; Wells, M.T.; Gathiram, P.; Sohar, E.; James, M.F.; Morrell, D.F.; Norman, R.J. Endotoxaemia in exhausted runners after a long-distance race. S. Afr. Med. J. 1988, 73, 533–536.
[76]  Hurley, J.C. The detection of endotoxemia with gram-negative bacteremia is bacterial species dependent. A meta-analysis of clinical studies. J. Clin. Microbiol. 2009, 47, 3826–3831, doi:10.1128/JCM.01189-09.
[77]  Hurley, J.C.; Guidet, B.; Offenstadt, G.; Maury, E. Endotoxemia and mortality prediction in ICU and other settings. underlying risk and co-detection of gram negative bacteremia are confounders. Crit. Care 2012, 16, R418, doi:10.1186/cc11210.
[78]  Hurley, J.C.; Opal, S. Prognostic value of endotoxemia in patients with gram-negative bacteremia is bacterial species dependent: An individual patient data meta-analysis. J. Innate Immun. 2013, 5, 555–564, doi:10.1159/000347172.
[79]  Kumar, A.; Roberts, D.; Wood, K.E.; Light, B.; Parrillo, J.E.; Sharma, S.; Cheang, M. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit. Care Med. 2006, 34, 1589–1596, doi:10.1097/01.CCM.0000217961.75225.E9.
[80]  Kumar, A.; Zarychanski, R.; Light, B.; Parrillo, J.; Maki, D.; Simon, D.; Doucette, S. Early combination antibiotic therapy yields improved survival compared with monotherapy in septic shock: A propensity-matched analysis. Crit. Care Med. 2010, 38, 1773–1785, doi:10.1097/CCM.0b013e3181eb3ccd.
[81]  Hurley, J.C. Reappraisal of the role of endotoxin in the sepsis syndrome. Lancet 1993, 341, 1133–1135, doi:10.1016/0140-6736(93)93139-R.
[82]  Errington, J. L-form bacteria, cell walls and the origins of life. Open Biol. 2013, 3, doi:10.1098/rsob.120143.
[83]  Briers, Y.; Staubli, T.; Schmid, M.C.; Wagner, M.; Schuppler, M.; Loessner, M.J. Intracellular vesicles as reproduction elements in cell wall-deficient L-form bacteria. PLoS One 2012, 7, e38514.
[84]  Rittirsch, D.; Hoesel, L.M.; Ward, P.A. The disconnect between animal models of sepsis and human sepsis. J. Leukoc. Biol. 2007, 81, 137–143, doi:10.1189/jlb.0806542.
[85]  Deitch, E.A. Animal models of sepsis and shock: A review and lessons learned. Shock 1998, 9, 1–11, doi:10.1097/00024382-199801000-00001.
[86]  Marshall, J.C. Sepsis: Rethinking the approach to clinical research. J. Leukoc. Biol. 2008, 83, 471–482, doi:10.1189/jlb.0607380.
[87]  Eichacker, P.Q.; Parent, C.; Kalil, A.; Esposito, C.; Cui, X.; Banks, S.M.; Gerstenberger, E.P.; Fitz, Y.; Danner, R.L.; Natanson, C. Risk and the efficacy of anti-inflammatory agents: Retrospective and confirmatory studies of sepsis. Am. J. Respir. Crit. Care Med. 2002, 166, 1197–1205, doi:10.1164/rccm.200204-302OC.
[88]  Dyson, A.; Singer, M. Animal models of sepsis: Why does preclinical efficacy fail to translate to the clinical setting? Crit. Care Med. 2009, 37 (Suppl. 1), S30–S37.
[89]  Riedemann, N.C.; Guo, R.F.; Ward, P.A. Novel strategies for the treatment of sepsis. Nat. Med. 2003, 9, 517–524, doi:10.1038/nm0503-517.
[90]  Suffredini, A.F.; Munford, R.S. Novel therapies for septic shock over the past 4 decades. JAMA 2011, 306, 194–199.
[91]  Warren, H.S.; Danner, R.L.; Munford, R.S. Anti-endotoxin monoclonal antibodies. N. Engl. J. Med. 1992, 326, 1153–1157, doi:10.1056/NEJM199204233261711.
[92]  Cross, A.S.; Opal, S.M.; Bhattacharjee, A.K.; Donta, S.T.; Peduzzi, P.N.; Furer, E.; Que, J.U.; Cryz, S.J. Immunotherapy of sepsis: Flawed concept or faulty implementation? Vaccine 1999, 17 (Suppl. 2), S13–S21, doi:10.1016/S0264-410X(99)00230-3.
[93]  Hurley, J.C. Meta analysis and investigation of anti—infective therapies. Exp. Opin. Investig. Drugs 1996, 6, 159–167, doi:10.1517/13543784.6.2.159.
[94]  Opal, S.M. The host response to endotoxin, antilipopolysaccharide strategies, and the management of severe sepsis. Int. J. Med. Microbiol. 2007, 297, 365–377, doi:10.1016/j.ijmm.2007.03.006.
[95]  Greisman, S.E.; Johnston, C.A. Review: Evidence against the hypothesis that antibodies to the inner core of lipopolysaccharides in antisera raised by immunization with enterobacterial deep-rough mutants confer broad-spectrum protection during Gram-negative bacterial sepsis. J. Endotoxin Res. 1997, 4, 123–153.
[96]  Chong, K.T.; Huston, M. Implications of endotoxin contamination in the evaluation of antibodies to lipopolysaccharides in a murine model of gram-negative sepsis. J. Infect. Dis. 1987, 156, 713–719.
[97]  Wakelin, S.J.; Sabroe, I.; Gregory, C.D.; Poxton, I.R.; Forsythe, J.L.; Garden, O.J.; Howie, S.E. “Dirty little secrets”—endotoxin contamination of recombinant proteins. Immunol. Lett. 2006, 106, 1–7, doi:10.1016/j.imlet.2006.04.007.
[98]  Warren, H.S.; Amato, S.F.; Fitting, C.; Black, K.M.; Loiselle, P.M.; Pasternack, M.S.; Cavaillon, J.M. Assessment of ability of murine and human anti-lipid A monoclonal antibodies to bind and neutralize lipopolysaccharide. J. Exp. Med. 1993, 177, 89–97, doi:10.1084/jem.177.1.89.
[99]  Opal, S.M.; Patrozou, E. Translational research in the development of novel sepsis therapeutics. Logical deductive reasoning or mission impossible? Crit. Care Med. 2009, 37, S10–S15, doi:10.1097/CCM.0b013e3181921497.
[100]  Lamontagne, F.; Briel, M.; Duffett, M.; Fox-Robichaud, A.; Cook, D.J.; Guyatt, G.; Lesur, O.; Meade, M.O. Systematic review of reviews including animal studies addressing therapeutic interventions for sepsis. Crit. Care Med. 2010, 38, 2401–2408, doi:10.1097/CCM.0b013e3181fa0468.
[101]  McCabe, W.R.; Kreger, B.E.; Johns, M. Type-specific and cross-reactive antibodies in gram-negative bacteremia. N. Engl. J. Med. 1972, 287, 261–267, doi:10.1056/NEJM197208102870601.
[102]  Zinner, S.H.; McCabe, W.R. Effects of IgM and IgG antibody in patients with bacteremia due to gram-negative bacilli. J. Infect. Dis. 1976, 133, 37–45, doi:10.1093/infdis/133.1.37.
[103]  Pollack, M.; Huang, A.I.; Prescott, R.K.; Young, L.S.; Hunter, K.W.; Cruess, D.F.; Tsai, C.M. Enhanced survival in Pseudomonas aeruginosa septicemia associated with high levels of circulating antibody to Escherichia coli endotoxin core. J. Clin. Investig. 1983, 72, 1874–1881, doi:10.1172/JCI111150.
[104]  Baumgartner, J.D.; Glauser, M.P.; McCutchan, J.A.; Ziegler, E.J.; van Melle, G.; Klauber, M.R.; Vogt, M.; Muehlen, E.; Luethy, R.; Chiolero, R.; et al. Prevention of gram-negative shock and death in surgical patients by antibody to endotoxin core glycolipid. Lancet 1985, 2, 59–63.
[105]  McCutchan, J.A.; Wolf, J.L.; Ziegler, E.J.; Braude, A.I. Ineffectiveness of single-dose human antiserum to core glycolipid (E. coli J5) for prophylaxis of bacteremic, gram-negative infections in patients with prolonged neutropenia. Schweiz. Med. Wochenschr. 1983, 14 (Suppl.), 40–45.
[106]  The Intravenous Immunoglobulin Collaborative Study Group. Prophylactic intravenous administration of standard immune globulin as compared with core-lipopolysaccharide immune globulin in patients at high risk of postsurgical infection. N. Engl. J. Med. 1992, 327, 234–240, doi:10.1056/NEJM199207233270404.
[107]  Bennett-Guerrero, E.; Ayuso, L.; Hamilton-Davies, C.; White, W.D.; Barclay, G.R.; Smith, P.K.; King, S.A.; Muhlbaier, L.H.; Newman, M.F.; Mythen, M.G. Relationship of preoperative antiendotoxin core antibodies and adverse outcomes following cardiac surgery. JAMA 1997, 277, 646–650, doi:10.1001/jama.1997.03540320048034.
[108]  J5 Study Group. Treatment of severe infectious purpura in children with human plasma from donors immunized with Escherichia coli J5: A prospective double-blind study. J. Infect. Dis. 1992, 165, 695–701, doi:10.1093/infdis/165.4.695.
[109]  Derkx, B.; Wittes, J.; McCloskey, R. Randomized, placebo-controlled trial of HA-1A; a human monoclonal antibody to endotoxin, in children with meningococcal septic shock. European Pediatric Meningococcal Septic Shock Trial Study Group. Clin. Infect. Dis. 1999, 28, 770–777.
[110]  Levin, M.; Quint, P.A.; Goldstein, B.; Barton, P.; Bradley, J.S.; Shemie, S.D.; Yeh, T.; Kim, S.S.; Cafaro, D.P.; Scannon, P.J.; et al. Recombinant bactericidal/permeability-increasing protein (rBPI21) as adjunctive treatment for children with severe meningococcal sepsis: A randomised trial. rBPI21 Meningococcal Sepsis Study Group. Lancet 2000, 356, 961–967, doi:10.1016/S0140-6736(00)02712-4.
[111]  Ziegler, E.J.; McCutchan, J.A.; Fierer, J.; Glauser, M.P.; Sadoff, J.C.; Douglas, H.; Braude, A.I. Treatment of gram-negative bacteremia and shock with human antiserum to a mutant Escherichia coli. N. Engl. J. Med. 1982, 307, 1225–1230, doi:10.1056/NEJM198211113072001.
[112]  Calandra, T.; Glauser, M.P.; Schellekens, J.; Verhoef, J. Treatment of gram-negative septic shock with human IgG antibody to Escherichia coli J5: A prospective, double-blind, randomized trial. J. Infect. Dis. 1988, 158, 312–319, doi:10.1093/infdis/158.2.312.
[113]  Grundmann, R.; Hornung, M. Immunoglobulin therapy in patients with endotoxemia and postoperative sepsis—A prospective randomized study. Prog. Clin. Biol. Res. 1988, 272, 339–349.
[114]  Schedel, I.; Dreikhausen, U.; Nentwig, B.; Hockenschnieder, M.; Rauthmann, D.; Balikcioglu, S.; Coldewey, R.; Deicher, H. Treatment of gram-negative septic shock with an immunoglobulin preparation: A prospective, randomized clinical trial. Crit. Care Med. 1991, 19, 1104–1113.
[115]  Behre, G.; Schedel, I.; Nentwig, B.; Wormann, B.; Essink, M.; Hiddemann, W. Endotoxin concentration in neutropenic patients with suspected gram-negative sepsis: Correlation with clinical outcome and determination of anti-endotoxin core antibodies during therapy with polyclonal immunoglobulin M-enriched immunoglobulins. Antimicrob. Agents Chemother. 1992, 36, 2139–2146.
[116]  Behre, G.; Ostermann, H.; Schedel, I. Endotoxin concentration and therapy with polyclonal immunoglobulin M-enriched immunoglobulins in neutropenic patients with sepsis syndrome. Pilot study and interim analysis of a randomized trial. Anti-infect. Drug Chemother. 1995, 13, 129–134.
[117]  Ziegler, E.J.; Fisher, C.J., Jr.; Sprung, C.L.; Straube, R.C.; Sadoff, J.C.; Foulke, G.E.; Wortel, C.H.; Fink, M.P.; Dellinger, R.P.; Teng, N.N.; et al. Treatment of gram-negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin. A randomized, double-blind, placebo-controlled trial. The HA-1A Sepsis Study Group. N. Engl. J. Med. 1991, 324, 429–436, doi:10.1056/NEJM199102143240701.
[118]  Greenman, R.L.; Schein, R.M.; Martin, M.A.; Wenzel, R.P.; MacIntyre, N.R.; Emmanuel, G.; Chmel, H.; Kohler, R.B.; McCarthy, M.; Plouffe, J.; et al. A controlled clinical trial of E5 murine monoclonal IgM antibody to endotoxin in the treatment of gram-negative sepsis. The XOMA Sepsis Study Group. JAMA 1991, 266, 1097–1102, doi:10.1001/jama.1991.03470080067031.
[119]  Fisher, C.J., Jr.; Khazaeli, M.B.; Albertson, T.E.; Dellinger, R.P.; Panacek, E.A.; Foulke, G.E.; Dating, C.; Smith, C.R.; LoBuglio, A.F. Initial evaluation of human monoclonal anti-lipid A antibody (HA-1A) in patients with sepsis syndrome. Crit. Care Med. 1990, 18, 1311–1315, doi:10.1097/00003246-199012000-00001.
[120]  The National Committee for the Evaluation of Centoxin. The French National Registry of HA-1A (Centoxin) in septic shock. A cohort study of 600 patients. Arch. Intern. Med. 1994, 154, 2484–2491, doi:10.1001/archinte.1994.00420210124014.
[121]  McCloskey, R.V.; Straube, R.C.; Sanders, C.; Smith, S.M.; Smith, C.R. Treatment of septic shock with human monoclonal antibody HA-1A. A randomized, double-blind, placebo-controlled trial. CHESS Trial Study Group. T Ann. Intern. Med. 1994, 121, 1–5, doi:10.7326/0003-4819-121-1-199407010-00001.
[122]  Angus, D.C.; Birmingham, M.C.; Balk, R.A.; Scannon, P.J.; Collins, D.; Kruse, J.A.; Graham, D.R.; Dedhia, H.V.; Homann, S.; MacIntyre, N. E5 murine monoclonal antiendotoxin antibody in gram-negative sepsis: A randomized controlled trial. E5 Study Investigators. JAMA 2000, 283, 1723–1730, doi:10.1001/jama.283.13.1723.
[123]  Daifuku, R.; Haenftling, K.; Young, J.; Groves, E.S.; Turrell, C.; Meyers, F.J. Phase I study of anti-lipopolysaccharide human monoclonal antibody MAB-T88. Antimicrob. Agents Chemother. 1992, 36, 2349–2351, doi:10.1128/AAC.36.10.2349.
[124]  Greenberg, R.N.; Wilson, K.M.; Kunz, A.Y.; Wedel, N.I.; Gorelick, K.J. Randomized, double-blind phase II study of anti-endotoxin antibody (E5) as adjuvant therapy in humans with serious gram-negative infections. Prog. Clin. Biol. Res. 1991, 367, 179–186.
[125]  Greenberg, R.N.; Wilson, K.M.; Kunz, A.Y.; Wedel, N.I.; Gorelick, K.J. Observations using antiendotoxin antibody (E5) as adjuvant therapy in humans with suspected, serious, gram-negative sepsis. Crit. Care Med. 1992, 20, 730–735, doi:10.1097/00003246-199206000-00005.
[126]  Albertson, T.E.; Panacek, E.A.; MacArthur, R.D.; Johnson, S.B.; Benjamin, E.; Matuschak, G.M.; Zaloga, G.; Maki, D.; Silverstein, J.; Tobias, J.K.; et al. Multicenter evaluation of a human monoclonal antibody to Enterobacteriaceae common antigen in patients with Gram-negative sepsis. Crit. Care Med. 2003, 31, 419–427, doi:10.1097/01.CCM.0000045564.51812.3F.
[127]  Willatts, S.M.; Radford, S.; Leitermann, M. Effect of the antiendotoxic agent, taurolidine, in the treatment of sepsis syndrome: A placebo-controlled, double-blind trial. Crit. Care Med. 1995, 23, 1033–1039, doi:10.1097/00003246-199506000-00007.
[128]  Reinhart, K.; Meier-Hellmann, A.; Beale, R.; Forst, H.; Boehm, D.; Willatts, S.; Rothe, K.F.; Adolph, M.; Hoffmann, J.E.; Boehme, M.; et al. Open randomized phase II trial of an extracorporeal endotoxin adsorber in suspected Gram-negative sepsis. Crit. Care Med. 2004, 32, 1662–1668, doi:10.1097/01.CCM.0000132902.54925.B5.
[129]  Bennett-Guerrero, E.; Grocott, H.P.; Levy, J.H.; Stierer, K.A.; Hogue, C.W.; Cheung, A.T.; Newman, M.F.; Carter, A.A.; Rossignol, D.P.; Collard, C.D. A phase II, double-blind, placebo-controlled, ascending-dose study of Eritoran (E5564), a lipid A antagonist, in patients undergoing cardiac surgery with cardiopulmonary bypass. Anesth. Analg. 2007, 104, 378–383, doi:10.1213/01.ane.0000253501.07183.2a.
[130]  Tidswell, M.; Tillis, W.; Larosa, S.P.; Lynn, M.; Wittek, A.E.; Kao, R.; Wheeler, J.; Gogate, J.; Opal, S.M. Phase 2 trial of eritoran tetrasodium (E5564), a toll-like receptor 4 antagonist, in patients with severe sepsis. Crit. Care Med. 2010, 38, 72–83, doi:10.1097/CCM.0b013e3181b07b78.
[131]  Opal, S.M.; Laterre, P.F.; Francois, B.; LaRosa, S.P.; Angus, D.C.; Mira, J.P.; Vincent, J.L. Effect of Eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis. The ACCESS Randomized Trial. JAMA 2013, 309, 1154–1162, doi:10.1001/jama.2013.2194.
[132]  Dellinger, R.P.; Tomayko, J.F.; Angus, D.C.; Opal, S.; Cupo, M.A.; McDermott, S.; Ducher, A.; Calandra, T.; Cohen, J. Efficacy and safety of a phospholipid emulsion (GR270773) in Gram-negative severe sepsis: Results of a phase II multicenter, randomized, placebo-controlled, dose-finding clinical trial. Crit. Care Med. 2009, 37, 2929–2938, doi:10.1097/CCM.0b013e3181b0266c.
[133]  Heemskerk, S.; Masereeuw, R.; Moesker, O.; Bouw, M.P.; van der Hoeven, J.G.; Peters, W.H.; Russel, F.G.; Pickkers, P. Alkaline phosphatase treatment improves renal function in severe sepsis or septic shock patients. Crit. Care Med. 2009, 37, 417–423, doi:10.1097/CCM.0b013e31819598af.
[134]  Pickkers, P.; Heemskerk, S.; Schouten, J.; Laterre, P.F.; Vincent, J.L.; Beishuizen, A.; Jorens, P.G.; Spapen, H.; Bulitta, M.; Peters, W.H.; et al. Alkaline phosphatase for treatment of sepsis-induced acute kidney injury: A prospective randomized double-blind placebo-controlled trial. Crit Care. 2012, 16, R14, doi:10.1186/cc11159.
[135]  Berry, L.J. Cellular Biology of Endotoxin. In Handbook of Endotoxin; Berry, L.J., Ed.; Elsevier: New York, NY, USA, 1985; pp. xvii–xxi.
[136]  Parker, S.J.; Watkins, P.E. Experimental models of gram-negative sepsis. Br. J. Surg. 2001, 88, 22–30, doi:10.1046/j.1365-2168.2001.01632.x.
[137]  Fink, M.P. Animal models of sepsis. Virulence 2014, 5, 1–11.
[138]  Seok, J.; Warren, H.S.; Cuenca, A.G.; Mindrinos, M.N.; Baker, H.V.; Xu, W.; Richards, D.R.; McDonald-Smith, G.P.; Gao, H.; Hennessy, L.; et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. PNAS 2013, 110, 3507–3512, doi:10.1073/pnas.1222878110.
[139]  Michie, H.R. The value of animal models in the development of new drugs for the treatment of the sepsis syndrome. J. Antimicrob. Chemother. 1998, 41 (Suppl. A), 47–49, doi:10.1093/jac/41.suppl_1.47.
[140]  Cross, A.S.; Opal, S.M.; Sadoff, J.C.; Gemski, P. Choice of bacteria in animal models of sepsis. Infect. Immun. 1993, 61, 2741–2747.
[141]  Hurley, J.C. Antibiotic action and Endotoxin. Ph.D. Thesis; University of Melbourne: Melbourne, Australia, March 1990. Available online: http://cat.lib.unimelb.edu.au/record=b1696516~S30 (accessed on 22 October 2013).
[142]  Danner, R.L.; Natanson, C.; Elin, R.J.; Hosseini, J.M.; Banks, S.; MacVittie, T.J.; Parrillo, J.E. Pseudomonas aeruginosa compared with Escherichia coli produces less endotoxemia but more cardiovascular dysfunction and mortality in a canine model of septic shock. Chest 1990, 98, 1480–1487, doi:10.1378/chest.98.6.1480.
[143]  Hoffman, W.D.; Pollack, M.; Banks, S.M.; Koev, L.A.; Solomon, M.A.; Danner, R.L.; Koles, N.; Guelde, G.; Yatsiv, I.; Mouginis, T.; et al. Distinct functional activities in canine septic shock of monoclonal antibodies specific for the O polysaccharide and core regions of Escherichia coli lipopolysaccharide. J. Infect. Dis. 1994, 169, 553–561, doi:10.1093/infdis/169.3.553.
[144]  Natanson, C.; Danner, R.L.; Reilly, J.M.; Doerfler, M.L.; Hoffman, W.D.; Akin, G.L.; Hosseini, J.M.; Banks, S.M.; Elin, R.J.; MacVittie, T.J.; et al. Antibiotics versus cardiovascular support in a canine model of human septic shock. Am. J. Physiol. 1990, 259, H1440–H1447.
[145]  Solomon, S.B.; Cui, X.; Gerstenberger, E.; Danner, R.L.; Fitz, Y.; Banks, S.M.; Natanson, C.; Eichacker, P.Q. Effective dosing of lipid A analogue E5564 in rats depends on the timing of treatment and the route of Escherichia coli infection. J. Infect. Dis. 2006, 193, 634–644, doi:10.1086/500147.
[146]  Quezado, Z.M.; Natanson, C.; Alling, D.W.; Banks, S.M.; Koev, C.A.; Elin, R.J.; Hosseini, J.M.; Bacher, J.D.; Danner, R.L.; Hoffman, W.D. A controlled trial of HA-1A in a canine model of gram-negative septic shock. JAMA 1993, 269, 2221–2227, doi:10.1001/jama.1993.03500170051033.
[147]  Eichacker, P.Q.; Hoffman, W.D.; Farese, A.; Danner, R.L.; Suffredini, A.F.; Waisman, Y.; Banks, S.M.; Mouginis, T.; Wilson, L.; Rothlein, R.; et al. Leukocyte CD18 monoclonal antibody worsens endotoxemia and cardiovascular injury in canines with septic shock. J. Appl. Physiol. 1993, 74, 1885–1892, doi:10.1063/1.354797.
[148]  Hoffman, W.D.; Danner, R.L.; Quezado, Z.M.; Banks, S.M.; Elin, R.J.; Hosseini, J.M.; Natanson, C. Role of endotoxemia in cardiovascular dysfunction and lethality. Virulent and nonvirulent Escherichia coli challenges in a canine model of septic shock. Infect. Immun. 1996, 64, 406–412.
[149]  Natanson, C.; Danner, R.L.; Elin, R.J.; Hosseini, J.M.; Peart, K.W.; Banks, S.M.; MacVittie, T.J.; Walker, R.I.; Parrillo, J.E. Role of endotoxemia in cardiovascular dysfunction and mortality. Escherichia coli and Staphylococcus aureus challenges in a canine model of human septic shock. J. Clin. Investig. 1989, 83, 243–251, doi:10.1172/JCI113866.
[150]  Natanson, C.; Fink, M.P.; Ballantyne, H.K.; MacVittie, T.J.; Conklin, J.J.; Parrillo, J.E. Gram-negative bacteremia produces both severe systolic and diastolic cardiac dysfunction in a canine model that simulates human septic shock. J. Clin. Investig. 1986, 78, 259–270, doi:10.1172/JCI112559.
[151]  Natanson, C.; Hoffman, W.D.; Koev, L.A.; Dolan, D.P.; Banks, S.M.; Bacher, J.; Danner, R.L.; Klein, H.G.; Parrillo, J.E. Plasma exchange does not improve survival in a canine model of human septic shock. Transfusion 1993, 33, 243–248.
[152]  Quezado, Z.M.; Natanson, C.; Banks, S.M.; Alling, D.W.; Koev, C.A.; Danner, R.L.; Elin, R.J.; Hosseini, J.M.; Parker, T.S.; Levine, D.M.; et al. Therapeutic trial of reconstituted human high-density lipoprotein in a canine model of gram-negative septic shock. J. Pharmacol. Exp. Ther. 1995, 272, 604–611.
[153]  Quezado, Z.M.; Hoffman, W.D.; Winkelstein, J.A.; Yatsiv, I.; Koev, C.A.; Cork, L.C.; Elin, R.J.; Eichacker, P.Q.; Natanson, C. The third component of complement protects against Escherichia coli endotoxin-induced shock and multiple organ failure. J. Exp. Med. 1994, 179, 569–578, doi:10.1084/jem.179.2.569.
[154]  Freeman, B.D.; Quezado, Z.; Zeni, F.; Natanson, C.; Danner, R.L.; Banks, S.; Quezado, M.; Fitz, Y.; Bacher, J.; Eichacker, P.Q. rG-CSF reduces endotoxemia and improves survival during E. coli pneumonia. J. Appl. Physiol. 1997, 83, 1467–1475.
[155]  Hurley, J.C. Endotoxin: Methods of detection and clinical correlates. Clin. Microbiol. Rev. 1995, 8, 268–292.
[156]  Rogy, M.A.; Moldawer, L.L.; Oldenburg, H.S.; Thompson, W.A.; Montegut, W.J.; Stackpole, S.A.; Kumar, A.; Palladino, M.A.; Marra, M.N.; Lowry, S.F. Anti-endotoxin therapy in primate bacteremia with HA-1A and BPI. Ann. Surg. 1994, 220, 77–85, doi:10.1097/00000658-199407000-00011.
[157]  Barclay, G.R. Endotoxin-core antibodies: Time for a reappraisal? Intensiv. Care Med. 1999, 25, 427–429, doi:10.1007/s001340050874.
[158]  Cometta, A.; Baumgartner, J.D.; Glauser, M.P. Polyclonal intravenous immune globulin for prevention and treatment of infections in critically ill patients. Clin. Exp. Immunol. 1994, 97 (Suppl. 1), 69–72.
[159]  Turgeon, A.F.; Hutton, B.; Fergusson, D.A.; McIntyre, L.; Tinmouth, A.A.; Cameron, D.W.; Hebert, P.C. Meta-analysis: Intravenous immunoglobulin in critically ill adult patients with sepsis. Ann. Intern. Med. 2007, 146, 193–203, doi:10.7326/0003-4819-146-3-200702060-00009.
[160]  Werdan, K.; Pilz, G.; Bujdoso, O.; Fraunberger, P.; Neeser, G.; Schmieder, R.E.; Viell, B.; Marget, W.; Seewald, M.; Walger, P.; et al. Score-based immunoglobulin G therapy of patients with sepsis: The SBITS study. Crit. Care Med. 2007, 35, 2693–2701, doi:10.1097/01.CCM.0000295426.37471.79.
[161]  Jackson, S.K.; Parton, J.; Barnes, R.A.; Poynton, C.H.; Fegan, C. Effect of IgM-enriched intravenous immunoglobulin (Pentaglobin) on endotoxaemia and anti-endotoxin antibodies in bone marrow transplantation. Eur. J. Clin. Investig. 1993, 23, 540–545, doi:10.1111/j.1365-2362.1993.tb00963.x.
[162]  Munster, A.M.; Moran, K.T.; Thupari, J.; Allo, M.; Winchurch, R.A. Prophylactic intravenous immunoglobulin replacement in high-risk burn patients. J. Burn Care Rehabil. 1987, 8, 376–380, doi:10.1097/00004630-198709000-00007.
[163]  Poynton, C.H.; Jackson, S.; Fegan, C.; Barnes, R.A.; Whittaker, J.A. Use of IgM enriched intravenous immunoglobulin (Pentaglobin) in bone marrow transplantation. Bone Marrow Transplant. 1992, 9, 451–457.
[164]  Flynn, P.M.; Shenep, J.L.; Stokes, D.C.; Fairclough, D.; Hildner, W.K. Polymyxin B moderates acidosis and hypotension in established, experimental gram-negative septicemia. J. Infect. Dis. 1987, 156, 706–712, doi:10.1093/infdis/156.5.706.
[165]  Ovstebo, R.; Brandtzaeg, P.; Brusletto, B.; Haug, K.B.; Lande, K.; Hoiby, E.A.; Kierulf, P. Use of robotized DNA isolation and real-time PCR to quantify and identify close correlation between levels of Neisseria meningitidis DNA and lipopolysaccharides in plasma and cerebrospinal fluid from patients with systemic meningococcal disease. J. Clin. Microbiol. 2004, 42, 2980–2987, doi:10.1128/JCM.42.7.2980-2987.2004.
[166]  Wortel, C.H.; von der Mohlen, M.A.; van Deventer, S.J.; Sprung, C.L.; Jastremski, M.; Lubbers, M.J.; Smith, C.R.; Allen, I.E.; ten Cate, J.W. Effectiveness of a human monoclonal anti-endotoxin antibody (HA-1A) in gram-negative sepsis: Relationship to endotoxin and cytokine levels. J. Infect. Dis. 1992, 166, 1367–1374, doi:10.1093/infdis/166.6.1367.
[167]  Cavaillon, J.M.; Haeffner-Cavaillon, N. Polymyxin-B inhibition of LPS-induced interleukin-1 secretion by human monocytes is dependent upon the LPS origin. Mol. Immunol. 1986, 23, 965–969, doi:10.1016/0161-5890(86)90127-6.
[168]  Davies, B.; Cohen, J. Endotoxin removal devices for the treatment of sepsis and septic shock. Lancet Infect. Dis. 2011, 11, 65–71, doi:10.1016/S1473-3099(10)70220-6.
[169]  Opal, S.M. Hemofiltration-absorption systems for the treatment of experimental sepsis: Is it possible to remove the “evil humors” responsible for septic shock? Crit. Care Med. 2000, 28, 1681–1682, doi:10.1097/00003246-200005000-00088.
[170]  Cruz, D.N.; Bellomo, R.; Ronco, C. Clinical effects of polymyxin B-immobilized fiber column in septic patients. Contrib. Nephrol. 2007, 156, 444–451, doi:10.1159/000102138.
[171]  Cruz, D.N.; Perazella, M.A.; Bellomo, R.; de Cal, M.; Polanco, N.; Corradi, V.; Lentini, P.; Nalesso, F.; Ueno, T.; Ranieri, V.M.; et al. Effectiveness of polymyxin B-immobilized fiber column in sepsis: A systematic review. Crit. Care 2007, 11, R47, doi:10.1186/cc5780.
[172]  Aoki, H.; Kodama, M.; Tani, T.; Hanasawa, K. Treatment of sepsis by extracorporeal elimination of endotoxin using polymyxin B-immobilized fiber. Am. J. Surg. 1994, 167, 412–417, doi:10.1016/0002-9610(94)90126-0.
[173]  Buttenschoen, K.; Radermacher, P.; Bracht, H. Endotoxin elimination in sepsis: Physiology and therapeutic application. Langenbecks Arch. Surg. 2010, 395, 597–605, doi:10.1007/s00423-010-0658-6.
[174]  Vincent, J.L.; Laterre, P.F.; Cohen, J.; Burchardi, H.; Bruining, H.; Lerma, F.A.; Wittebole, X.; de Backer, D.; Brett, S.; Marzo, D.; et al. A pilot-controlled study of a polymyxin B-immobilized hemoperfusion cartridge in patients with severe sepsis secondary to intra-abdominal infection. Shock 2005, 23, 400–405, doi:10.1097/01.shk.0000159930.87737.8a.
[175]  Cruz, D.N.; Antonelli, M.; Fumagalli, R.; Foltran, F.; Brienza, N.; Donati, A.; Malcangi, V.; Petrini, F.; Volta, G.; Bobbio Pallavicini, F.M.; et al. Early use of polymyxin B hemoperfusion in abdominal septic shock: The EUPHAS randomized controlled trial. JAMA 2009, 301, 2445–2452, doi:10.1001/jama.2009.856.
[176]  Novelli, G.; Ferretti, G.; Poli, L.; Pretagostini, R.; Ruberto, F.; Perrella, S.M.; Levi Sandri, G.B.; Morabito, V.; Berloco, P.B. Clinical results of treatment of postsurgical endotoxin-mediated sepsis with polymyxin-B direct hemoperfusion. Transplant. Proc. 2010, 42, 1021–1024, doi:10.1016/j.transproceed.2010.03.056.
[177]  Novelli, G.; Ferretti, G.; Ruberto, F.; Morabito, V.; Pugliese, F. Early management of endotoxemia using the endotoxin activity assay and polymyxin B-based hemoperfusion. Contrib. Nephrol. 2010, 167, 91–101, doi:10.1159/000315923.
[178]  Cavaillon, J.M. Polymyxin B for endotoxin removal in sepsis. Lancet Infect. Dis. 2011, 11, 426–427, doi:10.1016/S1473-3099(11)70131-1.
[179]  Amaral, A.C. Polymyxin B hemoperfusion and mortality in abdominal septic shock. JAMA 2009, 302, 1968–1969, doi:10.1001/jama.2009.1607.
[180]  Vincent, J.-L. Polymyxin B hemoperfusion and mortality in abdominal septic shock. JAMA 2009, 302, 1969–1970.
[181]  Ullrich, H.; Jakob, W.; Frohlich, D.; Rothe, G.; Prasser, C.; Drobnik, W.; Taeger, K.; Meier-Hellmann, A.; Reinhart, K.; Zimmermann, M.; et al. A new endotoxin adsorber: First clinical application. Ther. Apher. 2001, 5, 326–334, doi:10.1046/j.1526-0968.2001.00389.x.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133