For more than 100 years, an electrochemical plant has been operating in Flix (Catalonia, Spain) by the Ebro River. Its activities have originated a severe accumulation of environmental contaminants (metals, organochlorinated pesticides and radionuclides) in sediments of the Flix reservoir, while mercury (Hg) has been also frequently released to the air. Environmental exposure to industrial pollutants has been associated with decreased intelligence and behavioral problems. In the present study, we assessed, in 53 children living in the village of Flix and the surroundings, the relationships between the concentrations of a number of trace elements (As, Be, Cd, Cs, Hg, Mn, Ni, Pb, Sn, Tl, U and V) in hair and the levels of testosterone in blood, with respect to potential neuropsychological alterations. Lead (Pb) and Hg showed the highest mean concentrations in hair samples. However, the current Hg levels were lower than those previously found in children living in the same zone, while the concentration of the remaining elements was similar to those reported in the scientific literature. The outcomes of certain neuropsychological indicators showed a significant correlation with metals, such as Pb and uranium (U). More specifically, these elements were negatively correlated with working memory and hit reaction time, suggesting impulsivity. In summary, although Pb and U concentrations in hair were within standard levels, both metals could be correlated with certain, but minor, neuropsychological alterations in the childhood population of Flix. These findings should be confirmed by future birth cohort studies, with bigger study populations and using more complex statistical analyses, focused on human exposure to these specific elements.
References
[1]
Nadal, M.; Casacuberta, N.; Garcia-Orellana, J.; Ferre-Huguet, N.; Masque, P.; Schuhmacher, M.; Domingo, J.L. Human health risk assessment of environmental and dietary exposure to natural radionuclides in the catalan stretch of the Ebro river, spain. Environ. Monit. Assess. 2011, 175, 455–468, doi:10.1007/s10661-010-1543-z.
[2]
Sala, M.; Sunyer, J.; Otero, R.; Santiago-Silva, M.; Camps, C.; Grimalt, J. Organochlorine in the serum of inhabitants living near an electrochemical factory. Occup. Environ. Med. 1999, 56, 152–158, doi:10.1136/oem.56.3.152.
[3]
Ribas-Fito, N.; Torrent, M.; Carrizo, D.; Munoz-Ortiz, L.; Julvez, J.; Grimalt, J.O.; Sunyer, J. In utero exposure to background concentrations of ddt and cognitive functioning among preschoolers. Am. J. Epidemiol. 2006, 164, 955–962, doi:10.1093/aje/kwj299.
[4]
Carrizo, D.; Grimalt, J.O.; Ribas-Fito, N.; Torrent, M.; Sunyer, J. In utero and post-natal accumulation of organochlorine compounds in children under different environmental conditions. J. Environ. Moni. 2007, 9, 523–529, doi:10.1039/b700247e.
[5]
Ferre-Huguet, N.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Human health risk assessment for environmental exposure to metals in the catalan stretch of the Ebro river, Spain. Hum. Ecol. Risk Assess. 2009, 15, 604–623, doi:10.1080/10807030902892604.
[6]
Esteban, M.; Castano, A. Non-invasive matrices in human biomonitoring: A review. Environ. Int. 2009, 35, 438–449, doi:10.1016/j.envint.2008.09.003.
[7]
Appenzeller, B.M.; Tsatsakis, A.M. Hair analysis for biomonitoring of environmental and occupational exposure to organic pollutants: State of the art, critical review and future needs. Toxicol. Lett. 2012, 210, 119–140, doi:10.1016/j.toxlet.2011.10.021.
[8]
Bellinger, D.C. Inorganic arsenic exposure and children’s neurodevelopment: A review of the evidence. Toxics 2013, 1, 2–17, doi:10.3390/toxics1010002.
[9]
Montuori, P.; Jover, E.; Diez, S.; Ribas-Fito, N.; Sunyer, J.; Triassi, M.; Bayona, J.M. Mercury speciation in the hair of pre-school children living near a chlor-alkali plant. Sci. Total Environ. 2006, 369, 51–58, doi:10.1016/j.scitotenv.2006.04.003.
[10]
Batista, J.; Schuhmacher, M.; Domingo, J.L.; Corbella, J. Mercury in hair for a child population from Tarragona province, Spain. Sci. Total Environ. 1996, 193, 143–148, doi:10.1016/S0048-9697(96)05340-5.
[11]
Vermeir, G.; Viaene, M.; Staessen, J.; Hond, E.D.; Roels, H.A. Neurobehavioural investigations in adolescents exposed to environmental pollutants. Environ. Toxicol. Pharmacol. 2005, 19, 707–713, doi:10.1016/j.etap.2004.12.041.
[12]
Torrente, M.; Colomina, M.T.; Domingo, J.L. Metal concentrations in hair and cognitive assessment in an adolescent population. Biol. Trace Elem. Res. 2005, 104, 215–221, doi:10.1385/BTER:104:3:215.
[13]
LeClair, J.A.; Quig, D.W. Mineral status, toxic metal exposure and children’s behaviour. J. Orthom. Med. 2001, 16, 13–32.
[14]
Gooren, L. Testosterone and the brain. J. Men’s Health Gend. 2007, 4, 344–351.
[15]
Sisk, C.L.; Zehr, J.L. Pubertal hormones organize the adolescent brain and behavior. Front. Neuroendocrinol. 2005, 26, 163–174, doi:10.1016/j.yfrne.2005.10.003.
[16]
Marshall, W.A.; Tanner, J.M. Variations in the pattern of pubertal changes in boys. Arch. Dis. Child. 1970, 45, 13–23, doi:10.1136/adc.45.239.13.
[17]
Marshall, W.A.; Tanner, J.M. Variations in pattern of pubertal changes in girls. Arch. Dis. Child. 1969, 44, 291–303, doi:10.1136/adc.44.235.291.
[18]
International Labour Office. ISCO-88: International Standard Classification of Occupations. Geneva: ILO. 1990. Available online: http://www2.warwick.ac.uk/fac/soc/ier/research/classification/isco88/ (accessed on 24 December 2013).
[19]
Ferre-Huguet, N.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Monitoring metals in blood and hair of the population living near a hazardous waste incinerator: Temporal trend. Biol. Trace Elem. Res. 2009, 128, 191–199, doi:10.1007/s12011-008-8274-9.
[20]
Nadal, M.; Bocio, A.; Schuhmacher, M.; Domingo, J.L. Trends in the levels of metals in soils and vegetation samples collected near a hazardous waste incinerator. Arch. Environ. Contam. Toxicol. 2005, 49, 290–298, doi:10.1007/s00244-004-0262-2.
[21]
Kane, M.J.; Conway, A.R.; Miura, T.K.; Colflesh, G.J. Working memory, attention control, and the n-back task: A question of construct validity. J. Exp. Psychol. Learn. Mem. Cogn. 2007, 33, 615–622, doi:10.1037/0278-7393.33.3.615.
[22]
Deserno, L.; Sterzer, P.; Wustenberg, T.; Heinz, A.; Schlagenhauf, F. Reduced prefrontal-parietal effective connectivity and working memory deficits in schizophrenia. J. Neurosci. 2012, 32, 12–20, doi:10.1523/JNEUROSCI.3405-11.2012.
[23]
Kortte, K.B.; Horner, M.D.; Windham, W.K. The trail making test, Part B: Cognitive flexibility or ability to maintain set? Appl. Neuropsychol. 2002, 9, 106–109, doi:10.1207/S15324826AN0902_5.
[24]
Martin, A.; Wiggs, C.L.; Lalonde, F.; Mack, C. Word retrieval to letter and semantic cues: A double dissociation in normal subjects using interference tasks. Neuropsychologia 1994, 32, 1487–1494, doi:10.1016/0028-3932(94)90120-1.
[25]
Morrison, M.W.; Gregory, R.J.; Paul, J.J. Reliability of the finger tapping test and a note on sex differences. Percept. Mot. Skills 1979, 48, 139–142, doi:10.2466/pms.1979.48.1.139.
[26]
Andrew, J.M. “Optimal” lateralization on the tapping test. Int. J. Neurosci. 1981, 13, 75–79, doi:10.3109/00207458109043303.
[27]
Goodman, A.; Goodman, R. Strengths and difficulties questionnaire as a dimensional measure of child mental health. J. Am. Acad. Child Adolesc. Psychiatry 2009, 48, 400–403, doi:10.1097/CHI.0b013e3181985068.
[28]
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th ed. ed.; American Psychiatric Association: Washington, DC, USA, 2000.
[29]
Granero, S.L.J.; Schuhmacher, M.; Corbella, J.; Domingo, J.L. Biological monitoring of environmental pollution and human exposure to metals in Tarragona, Spain. I. Levels in hair of school children. Trace Elem. Electrol. 1998, 15, 39–43.
[30]
Deroma, L.; Parpinel, M.; Tognin, V.; Channoufi, L.; Tratnik, J.; Horvat, M.; Valent, F.; Barbone, F. Neuropsychological assessment at school-age and prenatal low-level exposure to mercury through fish consumption in an italian birth cohort living near a contaminated site. Int. J. Hyg. Environ. Health 2013, 216, 486–493, doi:10.1016/j.ijheh.2013.02.004.
[31]
Sitdikov, F.G.; Svyatova, N.V.; Egerev, E.S. Indicators of trace-element status of children living in rural areas. Bull. Exp. Biol. Med. 2011, 152, 12–14, doi:10.1007/s10517-011-1440-7.
[32]
Carneiro, M.F.; Moresco, M.B.; Chagas, G.R.; de Oliveira Souza, V.C.; Rhoden, C.R.; Barbosa, F., Jr. Assessment of trace elements in scalp hair of a young urban population in Brazil. Biol. Trace Elem. Res. 2011, 143, 815–824, doi:10.1007/s12011-010-8947-z.
[33]
Lakshmi Priya, M.D.; Geetha, A. Level of trace elements (copper, zinc, magnesium and selenium) and toxic elements (lead and mercury) in the hair and nail of children with autism. Biol. Trace Elem. Res. 2011, 142, 148–158, doi:10.1007/s12011-010-8766-2.
[34]
Puklova, V.; Krskova, A.; Cerna, M.; Cejchanova, M.; Rehurkova, I.; Ruprich, J.; Kratzer, K.; Kubinova, R.; Zimova, M. The mercury burden of the Czech population: An integrated approach. Int. J. Hyg. Environ. Health 2010, 213, 243–251, doi:10.1016/j.ijheh.2010.02.002.
[35]
Diez, S.; Delgado, S.; Aguilera, I.; Astray, J.; Perez-Gomez, B.; Torrent, M.; Sunyer, J.; Bayona, J.M. Prenatal and early childhood exposure to mercury and methylmercury in spain, a high-fish-consumer country. Arch. Environ. Contam. Toxicol. 2009, 56, 615–622, doi:10.1007/s00244-008-9213-7.
[36]
Freire, C.; Ramos, R.; Lopez-Espinosa, M.J.; Diez, S.; Vioque, J.; Ballester, F.; Fernandez, M.F. Hair mercury levels, fish consumption, and cognitive development in preschool children from granada, Spain. Environ. Res. 2010, 110, 96–104, doi:10.1016/j.envres.2009.10.005.
[37]
Dongarra, G.; Lombardo, M.; Tamburo, E.; Varrica, D.; Cibella, F.; Cuttitta, G. Concentration and reference interval of trace elements in human hair from students living in Palermo, Sicily (Italy). Environ. Toxicol. Pharmacol. 2011, 32, 27–34, doi:10.1016/j.etap.2011.03.003.
[38]
Eastman, R.R.; Jursa, T.P.; Benedetti, C.; Lucchini, R.G.; Smith, D.R. Hair as a biomarker of environmental manganese exposure. Environ. Sci. Technol. 2013, 47, 1629–1637.
Watson, W.S.; Morrison, J.; Bethel, M.I.; Baldwin, N.M.; Lyon, D.T.; Dobson, H.; Moore, M.R.; Hume, R. Food iron and lead absorption in humans. Am. J. Clin. Nutr. 1986, 44, 248–256.
[42]
Zimmermann, M.B.; Muthayya, S.; Moretti, D.; Kurpad, A.; Hurrell, R.F. Iron fortification reduces blood lead levels in children in Bangalore, India. Pediatrics 2006, 117, 2014–2021, doi:10.1542/peds.2005-2440.
[43]
Choi, J.W.; Kim, S.K. Relationships of lead, copper, zinc, and cadmium levels versus hematopoiesis and iron parameters in healthy adolescents. Ann. Clin. Lab. Sci. 2005, 35, 428–434.
[44]
Myers, G.J.; Davidson, P.W.; Cox, C.; Shamlaye, C.; Cernichiari, E.; Clarkson, T.W. Twenty-seven years studying the human neurotoxicity of methylmercury exposure. Environ. Res. 2000, 83, 275–285, doi:10.1006/enrs.2000.4065.
[45]
Crump, K.S.; Kjellstrom, T.; Shipp, A.M.; Silvers, A.; Stewart, A. Influence of prenatal mercury exposure upon scholastic and psychological test performance: Benchmark analysis of a New Zealand cohort. Risk Anal. 1998, 18, 701–713.
[46]
Grandjean, P.; Weihe, P.; White, R.F.; Debes, F.; Araki, S.; Yokoyama, K.; Murata, K.; Sorensen, N.; Dahl, R.; Jorgensen, P.J. Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol. Teratol. 1997, 19, 417–428, doi:10.1016/S0892-0362(97)00097-4.
[47]
Debes, F.; Budtz-Jorgensen, E.; Weihe, P.; White, R.F.; Grandjean, P. Impact of prenatal methylmercury exposure on neurobehavioral function at age 14 years. Neurotoxicol. Teratol. 2006, 28, 363–375, doi:10.1016/j.ntt.2006.02.004.
[48]
Menezes-Filho, J.A.; Bouchard, M.; Sarcinelli Pde, N.; Moreira, J.C. Manganese exposure and the neuropsychological effect on children and adolescents: A review. Rev. Panam. Salud Publica 2009, 26, 541–548, doi:10.1590/S1020-49892009001200010.
[49]
Kunert, H.J.; Wiesmuller, G.A.; Schulze-Robbecke, R.; Ebel, H.; Muller-Kuppers, M.; Podoll, K. Working memory deficiencies in adults associated with low-level lead exposure: Implications of neuropsychological test results. Int. J. Hyg. Environ. Health 2004, 207, 521–530, doi:10.1078/1438-4639-00323.
[50]
Walkowiak, J.; Altmann, L.; Kramer, U.; Sveinsson, K.; Turfeld, M.; Weishoff-Houben, M.; Winneke, G. Cognitive and sensorimotor functions in 6-year-old children in relation to lead and mercury levels: Adjustment for intelligence and contrast sensitivity in computerized testing. Neurotoxicol. Teratol. 1998, 20, 511–521, doi:10.1016/S0892-0362(98)00010-5.
[51]
Boucher, O.; Burden, M.J.; Muckle, G.; Saint-Amour, D.; Ayotte, P.; Dewailly, E.; Nelson, C.A.; Jacobson, S.W.; Jacobson, J.L. Response inhibition and error monitoring during a visual go/no-go task in inuit children exposed to lead, polychlorinated biphenyls, and methylmercury. Environ. Health Perspect. 2012, 120, 608–615.
[52]
Bellinger, D.C. Very low lead exposures and children’s neurodevelopment. Curr. Opin. Pediatr. 2008, 20, 172–177, doi:10.1097/MOP.0b013e3282f4f97b.
[53]
Monleau, M.; Bussy, C.; Lestaevel, P.; Houpert, P.; Paquet, F.; Chazel, V. Bioaccumulation and behavioural effects of depleted uranium in rats exposed to repeated inhalations. Neurosci. Lett. 2005, 390, 31–36, doi:10.1016/j.neulet.2005.07.051.
[54]
Briner, W.; Murray, J. Effects of short-term and long-term depleted uranium exposure on open-field behavior and brain lipid oxidation in rats. Neurotoxicol. Teratol. 2005, 27, 135–144, doi:10.1016/j.ntt.2004.09.001.
[55]
Albina, M.L.; Belles, M.; Linares, V.; Sanchez, D.J.; Domingo, J.L. Restraint stress does not enhance the uranium-induced developmental and behavioral effects in the offspring of uranium-exposed male rats. Toxicology 2005, 215, 69–79, doi:10.1016/j.tox.2005.06.027.
[56]
Lestaevel, P.; Bensoussan, H.; Dhieux, B.; Dublineau, I.; Voisin, P.; Gourmelon, P. Cognitive and molecular responses of central nervous system after chronic exposure to uranium. Toxicol. Lett. 2010, 196S, S222.
[57]
Bensoussan, H.; Grancolas, L.; Dhieux-Lestaevel, B.; Delissen, O.; Vacher, C.M.; Dublineau, I.; Voisin, P.; Gourmelon, P.; Taouis, M.; Lestaevel, P. Heavy metal uranium affects the brain cholinergic system in rat following sub-chronic and chronic exposure. Toxicology 2009, 261, 59–67, doi:10.1016/j.tox.2009.04.054.
[58]
Yu, Y.Z.; Shi, J.X. Relationship between levels of testosterone and cortisol in saliva and aggressive behaviors of adolescents. Biomed. Environ. Sci. 2009, 22, 44–49, doi:10.1016/S0895-3988(09)60021-0.
[59]
Wood, R.I.; Armstrong, A.; Fridkin, V.; Shah, V.; Najafi, A.; Jakowec, M. Roid rage in rats? Testosterone effects on aggressive motivation, impulsivity and tyrosine hydroxylase. Physiol. Behav. 2013, 110–111, 6–12, doi:10.1016/j.physbeh.2012.12.005.
[60]
Siegel, J.A.; Young, L.A.; Neiss, M.B.; Samuels, M.H.; Roselli, C.E.; Janowsky, J.S. Estrogen, testosterone, and sequential movement in men. Behav. Neurosci. 2008, 122, 955–962, doi:10.1037/a0013045.
[61]
Era, P.; Alen, M.; Rahkila, P. Psychomotor and motor speed in power athletes self-administering testosterone and anabolic steroids. Res. Q. Exerc. Sport 1988, 59, 50–56, doi:10.1080/02701367.1988.10605473.
[62]
Bender, R.; Lange, S. Adjusting for multiple testing—When and how? J. Clin. Epidemiol. 2001, 54, 343–349, doi:10.1016/S0895-4356(00)00314-0.
[63]
Nagakawa, S. A farewell to bonferroni: The problems of low statistical power and publication bias. Behav. Ecol. 2004, 15, 1044–1045, doi:10.1093/beheco/arh107.