全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Forests  2013 

Managing Understory Vegetation for Maintaining Productivity in Black Spruce Forests: A Synthesis within a Multi-Scale Research Model

DOI: 10.3390/f4030613

Keywords: Kalmia angustifolia, Rhododendron groenlandicum, Sphagnum, silviculture, mechanical site preparation, tactical and strategic forest management

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sustainable management of boreal ecosystems involves the establishment of vigorous tree regeneration after harvest. However, two groups of understory plants influence regeneration success in eastern boreal Canada. Ericaceous shrubs are recognized to rapidly dominate susceptible boreal sites after harvest. Such dominance reduces recruitment and causes stagnant conifer growth, lasting decades on some sites. Additionally, peat accumulation due to Sphagnum growth after harvest forces the roots of regenerating conifers out of the relatively nutrient rich and warm mineral soil into the relatively nutrient poor and cool organic layer, with drastic effects on growth. Shifts from once productive black spruce forests to ericaceous heaths or paludified forests affect forest productivity and biodiversity. Under natural disturbance dynamics, fires severe enough to substantially reduce the organic layer thickness and affect ground cover species are required to establish a productive regeneration layer on such sites. We succinctly review how understory vegetation influences black spruce ecosystem dynamics in eastern boreal Canada, and present a multi-scale research model to understand, limit the loss and restore productive and diverse ecosystems in this region. Our model integrates knowledge of plant-level mechanisms in the development of silvicultural tools to sustain productivity. Fundamental knowledge is integrated at stand, landscape, regional and provincial levels to understand the distribution and dynamics of ericaceous shrubs and paludification processes and to support tactical and strategic forest management. The model can be adapted and applied to other natural resource management problems, in other biomes.

References

[1]  Lieffers, V.J.; Messier, C.; Burton, P.; Ruel, J.-C.; Grover, G.E. Nature-based silviculture for sustaining a variety of boreasl forest values. In Towards Sustainable Management of the Boreal Forest; Burton, P.J., Messier, C., Smith, D.W., Adamowicz, W.L., Eds.; NRC Research Press: Ottawa, ON, USA, 2003; pp. 481–530.
[2]  Lindenmayer, D.B.; Franklin, J.F.; L?hmus, A.; Baker, S.C.; Bauhus, J.; Beese, W.; Brodie, A.; Kiehl, B.; Kouki, J.; Pastur, G.M.; Messier, C.; Neyland, M.; Palik, B.; Sverdrup-Thygeson, A.; Volney, J.; Wayne, A.; Gustafsson, L. A major shift to the retention approach for forestry can help resolve some global forest sustainability issues. Conserv. Lett. 2012, 5, 421–431, doi:10.1111/j.1755-263X.2012.00257.x.
[3]  Gauthier, S.; Vaillancourt, M.A.; Leduc, A.; De Grandpré, L.; Kneeshaw, D.; Morin, H.; Drapeau, P.; Bergeron, Y. Ecosystem Management in the Boreal Forest; Presses de l’Université du Québec: Québec, Canada, 2009; p. 572.
[4]  Saucier, J.P.; Robitaille, A.; Grondin, P. Cadre bioclimatique du Québec. In écologie forestière. Manuel de foresterie, 2nd ed. Ordre des ingénieurs forestiers du Québec; éditions Multimondes: Québec, Canada, 2009; pp. 186–205.
[5]  Harvey, B.; Brais, S. Effects of mechanized careful logging on natural regeneration and vegetation competition in the southeastern Canadian boreal forest. Can. J. For. Res. 2002, 32, 653–666, doi:10.1139/x02-006.
[6]  Raymond, P.; Bédard, S.; Roy, V.; Larouche, C.; Tremblay, S. The irregular shelterwood system: review, classification, and potential application to forests affected by partial disturbances. J. For. 2009, 108, 405–413.
[7]  Royo, A.A.; Carson, W.P. On the formation of dense understory layers in forests worldwide: Consequences and implications for forest dynamics, biodiversity, and succession. Can. J. For. Res. 2006, 36, 1345–1362, doi:10.1139/x06-025.
[8]  Nilsson, M.-C.; Wardle, D.A. Understory vegetation as a forest ecosystem driver: Evidence from the northern Swedish boreal forest. Front. Ecol. Environ. 2005, 3, 421–428, doi:10.1890/1540-9295(2005)003[0421:UVAAFE]2.0.CO;2.
[9]  De Montigny, L.M.; Weetman, G.F. The Effects of Ericaceous Plants on Forest Productivity. N-X-271; Canadian Forest Service, Forestry Canada: Newfoundland, Canada, 1990; pp. 83–90.
[10]  Read, D.J.; Jalal, M.A.F. The Physiological Basis of Interaction between Calluna Vulgaris, Forest Trees, and Other Plant Species. Proceedings of Weed Control in Forestry, University of Nottingham, Nottingham, UK, 1–2 April 1980; Atkinson, D., McCavish, W.J., Spencer-Jones, D.H., O’Keeffe, M.G., Allen, M.G., Makepeace, R.J., Eds.; Association of Applied Biologists—Weed Group in conjunction with the Institute of Foresters of Great Britain, University of Nottingham: Nottingham, UK, 1980; pp. 21–32.
[11]  Zackrisson, O.; Nilsson, M.C.; Dahlberg, A.; J?derlund, A. Interference mechanisms in conifer-Ericaceae-feathermoss communities. Oikos 1997, 78, 209–220, doi:10.2307/3546287.
[12]  Prescott, C.E.; Sajedi, T. The role of salal in forest regeneration problems in coastal British Columbia: problem or symptom? For. Chron. 2008, 84, 29–36.
[13]  Mallik, A.U. Conifer regeneration problems in boreal and temperate forests with ericaceous understory: Role of disturbance, seedbed limitation, and keystone species change. Crit. Rev. Plant. Sci. 2003, 22, 341–366, doi:10.1080/713610860.
[14]  Hébert, F.; Thiffault, N. The biology of Canadian weeds. 146. Rhododendron groenlandicum (Oeder) Kron and Judd. Can. J. Plant. Sci. 2011, 91, 725–738, doi:10.4141/cjps2010-012.
[15]  Joosten, H.; Clarke, D. Wise Use of Mires and Peatlands: Background and Principles Including A Framework for Decision-Making; International Mire Conservation Group and International Peat Society: Jyv?skyl?, Finland, 2002; p. 303.
[16]  Lavoie, M.; Paré, D.; Fenton, N.; Groot, A.; Taylor, K. Paludification and management of forested peatland in Canada: a literature review. Can. J. For. Res. 2005, 13, 21–50.
[17]  Simard, M.; Lecomte, N.; Bergeron, Y.; Bernier, P.Y.; Paré, D. Forest productivity decline caused by successional paludification of boreal soils. Ecol. Appl. 2007, 17, 1619–1637, doi:10.1890/06-1795.1.
[18]  Mallik, A.U. Conversion of temperate forests into heaths: Role of ecosystem disturbance and ericaceous plants. Environ. Manag. 1995, 19, 675–684, doi:10.1007/BF02471950.
[19]  Ganio, L.M.; Puettmann, K.J. Designing long-term, large-scale forestry experiments with research objectives at multiple scales. J. Sust. For. 2008, 26, 1–18, doi:10.1300/J091v26n01_01.
[20]  Peterson, E.B. Inhibition of black spruce primary roots by a water-soluble substance in Kalmia angustifolia. For. Sci. 1965, 11, 473–479.
[21]  Mallik, A.U. Allelopathic potential of Kalmia angustifolia to black spruce (Picea mariana). For. Ecol. Manag. 1987, 20, 43–51.
[22]  Thiffault, N.; Titus, B.D.; Munson, A.D. Black spruce seedlings in a Kalmia-Vaccinium association: Microsite manipulation to explore interactions in the field. Can. J. For. Res. 2004, 34, 1657–1668, doi:10.1139/x04-046.
[23]  LeBel, P.; Thiffault, N.; Bradley, R.L. Kalmia removal increases nutrient supply and growth of black spruce seedlings: An effect fertilizer cannot emulate. For. Ecol. Manag. 2008, 256, 1780–1784, doi:10.1016/j.foreco.2008.02.050.
[24]  Joanisse, G.D.; Bradley, R.L.; Preston, C.M.; Munson, A.D. Soil enzyme inhibition by condensed litter tannins may drive ecosystem structure and processes: The case of Kalmia angustifolia. New. Phytol. 2007, 175, 535–546, doi:10.1111/j.1469-8137.2007.02113.x.
[25]  Joanisse, G.D.; Bradley, R.L.; Preston, C.M.; Bending, G.D. Sequestration of soil nitrogen as tannin-protein complexes may improve the competitive ability of sheep laurel (Kalmia angustifolia) relative to black spruce (Picea mariana). New. Phytol. 2009, 181, 187–198, doi:10.1111/j.1469-8137.2008.02622.x.
[26]  Callaway, R.M.; Pennings, S.C.; Richards, C.L. Phenotypic plasticity and interactions among plants. Ecology 2003, 1115–1128.
[27]  Hébert, F.; Thiffault, N.; Munson, A.D. Does trait plasticity of three boreal nutrient-conserving species relate to their competitive ability? Ecoscience 2011, 18, 382–393, doi:10.2980/18-4-3432.
[28]  Taylor, C.M.A.; Tabbush, P.M. Nitrogen Deficiency in Sitka Spruce Plantations; Forestry Commission (UK): Farnham, UK, 1990; p. 20.
[29]  Bennett, J.N.; Blevins, L.L.; Barker, J.E.; Blevins, D.P.; Prescott, C.E. Increases in tree growth and nutrient supply still apparent 10 to 13 years following fertilization and vegetation control of salal-dominated cedar-hemlock stands on Vancouver Island. Can. J. For. Res. 2003, 33, 1516–1524, doi:10.1139/x03-069.
[30]  Thiffault, N.; Cyr, G.; Pregent, G.; Jobidon, R.; Charette, L. Artificial regeneration of an ericacees black spruce stand—Effects of scarification, fertilization and plant type 10 years later. For. Chron. 2004, 80, 141–149.
[31]  Thiffault, N.; Hébert, F.; Jobidon, R. Planted Picea mariana growth and nutrition as influenced by silviculture × nursery interactions on an ericaceous-dominated site. Silva. Fenn. 2012, 46, 667–682.
[32]  Thiffault, N.; Jobidon, R. How to shift unproductive Kalmia angustifolia–Rhododendron groenlandicum heath to productive conifer plantation. Can. J. For. Res. 2006, 36, 2364–2376, doi:10.1139/x06-090.
[33]  Thiffault, N.; Titus, B.D.; Munson, A.D. Silvicultural options to promote seedling establishment on Kalmia-Vaccinium-dominated sites. Scand. J. For. Res. 2005, 20, 110–121, doi:10.1080/02827580510008356.
[34]  Bradley, R.L.; Titus, B.D.; Preston, C.P.; Bennett, J. Improvement of nutritional site quality 13 years after single application of fertiliser N and P on regenerating cedar-hemlock cutovers on northern Vancouver Island, B.C. Plant. Soil 2000, 223, 195–206.
[35]  Moroni, M.T.; Thiffault, N.; Titus, B.D.; Mante, C.; Makeschin, F. Controlling Kalmia and reestablishing conifer dominance enhances soil fertility indicators in central Newfoundland, Canada. Can. J. For. Res. 2009, 39, 1270–1279.
[36]  Prévost, M. Effets du Scarifiage sur les propriétés du sol, la Croissance des semis et la compétition: Revue des Connaissances Actuelles et Perspectives de Recherches au Québec. Ann. Sci. For. 1992, 49, 277–296.
[37]  Titus, B.D.; Sidhu, S.S.; Mallik, A.U. A Summary of some Studies on Kalmia Angustifolia L.: A Problem Species in Newfoundland Forestry. N-X-296; Canadian Forest Service: St. John’s, Canada, 1995; p. 68.
[38]  Thiffault, N.; Picher, G.; Auger, I. Initial distance to Kalmia angustifolia as a predictor of planted conifer growth. New For. 2012, 43, 849–868, doi:10.1007/s11056-012-9324-x.
[39]  Thiffault, N.; Titus, B.D.; Moroni, M.T. Silviculture and planted species interact to influence reforestation success on a Kalmia-Dominated Site—A 15-Year Study. For. Chron. 2010, 86, 234–242.
[40]  Hawkins, C.B.D.; Steele, T.W.; Letchford, T. The economics of site preparation and the impacts of current forest policy: Evidence from central British Columbia. Can. J. For. Res. 2006, 36, 482–494, doi:10.1139/x05-262.
[41]  Lorente, M.; Parsons, W.F.J.; Bradley, R.L.; Munson, A.D. Soil and plant legacies associated with harvest trails in boreal black spruce forests. For. Ecol. Manag. 2012, 269, 168–176, doi:10.1016/j.foreco.2011.12.029.
[42]  Thiffault, N.; Roy, V. Living without herbicides in Québec (Canada): Historical context, current strategy, research and challenges in forest vegetation management. Eur. J. For. Res. 2011, 130, 117–133, doi:10.1007/s10342-010-0373-4.
[43]  Yamasaki, S.H.; Fyles, J.W.; Titus, B.D. Interactions among Kalmia Angustifolia, soil characteristics, and the growth and nutrition of black spruce seedlings in two boreal newfoundland plantations of contrasting fertility. Can. J. For. Res. 2002, 32, 2215–2224, doi:10.1139/x02-119.
[44]  Hébert, F.; Thiffault, N.; Ruel, J.-C.; Munson, A.D. Ericaceous shrubs affect black spruce physiology independently from inherent site fertility. For. Ecol. Manag. 2010, 260, 219–228, doi:10.1016/j.foreco.2010.04.026.
[45]  Burton, P.J. Some limitations inherent to static indices of plant competition. Can. J. For. Res. 1993, 23, 2141–2152, doi:10.1139/x93-267.
[46]  Rheault, H. Contrer l’envahissement par les éricacées. Fascicule 4.10. In Manuel de détermination des possibilités forestières 2013–2018; Bureau du forestier en chef, Gouvernement du Québec: Roberval, Canada, 2013. in press.
[47]  Franklin, S.E.; Gillespie, R.T.; Titus, B.D.; McCaffrey, T.M. Discrimination of Kalmia angustifolia using Compact Airborne Spectrographic Imager (CASI) data. Can. J. Remote Sens. 1997, 23, 71–75.
[48]  Franklin, S.E.; Gillespie, R.T.; Titus, B.D.; Pike, D.B. Aerial and satellite sensor detection of Kalmia angustifolia at forest regeneration sites in central Newfoundland. Int. J. Remote Sens. 1994, 15, 2533–2557.
[49]  van Lier, O.; Fournier, R.A.; Bradley, R.L.; Thiffault, N. A multi-resolution satellite imagery approach for large area mapping of ericaceous shrubs in Northern Quebec, Canada. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 334–343, doi:10.1016/j.jag.2009.05.003.
[50]  Boucher, Y.; Arseneault, D.; Sirois, L. Logging-induced change (1930–2002) of a preindustrial landscape at the northern range limit of northern hardwoods, eastern Canada. Can. J. For. Res. 2006, 36, 505–517, doi:10.1139/x05-252.
[51]  Bureau du forestier en chef. Bilan d’aménagement forestier durable (2000–2008); Gouvernement du Québec: Roberval, Canada, 2010; p. 290.
[52]  Silvola, J. Moisture dependance of CO2 exchange and its recovery after drying in certain boreal forest peat mosses. Lindbergia 1991, 17, 5–10.
[53]  Groot, A.; Adams, M.J. Direct seeding black spruce on peatlands: Fifth-year results. For. Chron. 1994, 70, 585–592.
[54]  Lavoie, M.; Paré, D.; Bergeron, Y. Relationships between microsite type and the growth and nutrition of young black spruce on post-disturbed lowland black spruce sites in eastern Canada. Can. J. For. Res. 2007, 37, 62–73, doi:10.1139/x06-196.
[55]  Lafleur, B.; Paré, D.; Fenton, N.J.; Bergeron, Y. Growth and nutrition of black spruce seedlings in response to disruption of Pleurozium and Sphagnum moss carpets in boreal forested peatlands. Plant. Soil 2011, 345, 141–153, doi:10.1007/s11104-011-0767-1.
[56]  Lavoie, M.; Paré, D.; Bergeron, Y. Quality of growth substrates of post-disturbed lowland black spruce sites for black spruce (Picea mariana) seedling growth. New For. 2007, 33, 207–216, doi:10.1007/s11056-006-9024-5.
[57]  DeLuca, T.; Zackrisson, O.; Nilsson, M.; Sellstedt, A. Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature 2002, 419, 917–920, doi:10.1038/nature01051.
[58]  N?sholm, T.; Kielland, K.; Ganeteg, U. Uptake of organic nitrogen by plants. New Phytol. 2009, 182, 31–48, doi:10.1111/j.1469-8137.2008.02751.x.
[59]  Fenton, N.J.; Bergeron, Y.; Paré, D. Decomposition rates of bryophytes in managed boreal forests: Influence of bryophyte species and forest harvesting. Plant. Soil 2010, 336, 499–508, doi:10.1007/s11104-010-0506-z.
[60]  Lang, S.I.; Cornelissen, J.H.C.; Klahn, T.; van Logtestijn, R.S.P.; Broekman, R.; Schweikert, W.; Aerts, R. An experimental comparison of chemical traits and litter decomposition rates in a diverse range of subarctic bryophyte, lichen and vascular plant species. J. Ecol. 2009, 97, 886–900, doi:10.1111/j.1365-2745.2009.01538.x.
[61]  Davey, M.L.; Currah, R.S. Interactions between mosses (Bryophyta) and fungi. Can. J. Bot. 2006, 84, 1509–1519, doi:10.1139/b06-120.
[62]  Fenton, N.; Lecomte, N.; Légaré, S.; Bergeron, Y. Paludification in black spruce (Picea mariana) forests of eastern Canada: Potential factors and management implications. For. Ecol. Manag. 2005, 213, 151–159, doi:10.1016/j.foreco.2005.03.017.
[63]  Lecomte, N.; Bergeron, Y. Successional pathways on different surficial deposits in the coniferous boreal forest of the Quebec Clay Belt. Can. J. For. Res. 2005, 35, 1984–1995, doi:10.1139/x05-114.
[64]  Légaré, S.; Paré, D.; Bergeron, Y. Influence of aspen on forest floor properties in black spruce-dominated stands. Plant Soil 2005, 275, 207–220, doi:10.1007/s11104-005-1482-6.
[65]  Laganière, J.; Paré, D.; Bradley, R.L. Linking the abundance of aspen with soil faunal communities and rates of belowground processes within single stands of mixed aspen-black spruce. Appl. Soil Ecol. 2009, 41, 19–28, doi:10.1016/j.apsoil.2008.08.005.
[66]  Fenton, N.J.; Bergeron, Y. Facilitative succession in a boreal bryophyte community driven by changes in available moisture and light. J. Veg. Sci. 2006, 17, 65–76, doi:10.1111/j.1654-1103.2006.tb02424.x.
[67]  Williams, T.; Flanagan, L. Measuring and modelling environmental influences on photosynthetic gas exchange in Sphagnum and Pleurozium. Plant. Cell. Environ. 1998, 21, 555–564, doi:10.1046/j.1365-3040.1998.00292.x.
[68]  Bisbee, K.; Gower, S.; Norman, J.; Nordheim, E. Environmental controls on ground cover species composition and productivity in a boreal black spruce forest. Oecologia 2001, 120, 261–270.
[69]  Lecomte, N.; Simard, M.; Bergeron, Y. Effects of fire severity and initial tree composition on stand structural development in the coniferous boreal forest of northwestern Quebec, Canada. Ecoscience. 2006, 13, 152–163, doi:10.2980/i1195-6860-13-2-152.1.
[70]  Belleau, A.; Leduc, A.; Lecomte, N.; Bergeron, Y. Forest succession rate and pathways on different surface deposit types in the boreal forest of northwestern Quebec. Ecoscience 2011, 18, 329–340, doi:10.2980/18-4-3393.
[71]  Fenton, N.J.; Simard, M.; Bergeron, Y. Emulating natural disturbances: The role of silviculture in creating even-aged and complex structures in the black spruce boreal forest of eastern North America. J. For. Res. 2009, 14, 258–267, doi:10.1007/s10310-009-0134-8.
[72]  Greene, D.F.; Macdonald, S.E.; Haeussler, S.; Domenicano, S.; Noel, J.; Jayen, K.; Charron, I.; Gauthier, S.; Hunt, S.; Gielau, E.T.; Bergeron, Y.; Swift, L. The reduction of organic-layer depth by wildfire in the North American boreal forest and its effect on tree recruitment by seed. Can. J. For. Res. 2007, 37, 1012–1023, doi:10.1139/X06-245.
[73]  Lafleur, B.; Fenton, N.J.; Paré, D.; Simard, M.; Bergeron, Y. Contrasting effects of season and method of harvest on soil properties and the growth of black spruce regeneration in the boreal forested peatlands of eastern Canada. Silva. Fenn. 2010, 44, 799–813.
[74]  Renard, S. Impact du br?lage dirigé comme préparation de terrain sur l'état de paludification et la croissance de l'épinette noire dans les pessières à mousses paludifiées de la ceinture d'argile. Master’s Thesis, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Canada, 2009.
[75]  Laamrani, A.; Valeria, O.; Cheng, L.-Z.; Bergeron, Y.; Camerlynck, C. The use of ground penetrating radar for remote sensing the organic layer-mineral soil interface in paludified boreal forests. Can. J. Remote Sens. 2013, 39, 1–15, doi:10.5589/m13-003.
[76]  Simard, M.; Bernier, P.Y.; Bergeron, Y.; Paré, D.; Guérine, L. Paludification dynamics in the boreal forest of the James Bay Lowlands: Effect of time since fire and topography. Can. J. For. Res. 2009, 39, 546–552, doi:10.1139/X08-195.
[77]  Lavoie, M.; Harper, K.; Paré, D.; Bergeron, Y. Spatial pattern in the organic layer and tree growth: A case study from regenerating Picea mariana stands prone to paludification. J. Veg. Sci. 2007, 18, 213–222.
[78]  Shetler, G.; Turetsky, M.R.; Kane, E.; Kasischke, E. Sphagnum mosses limit total carbon consumption during fire in Alaskan black spruce forests. Can. J. For. Res. 2008, 38, 2328–2336, doi:10.1139/X08-057.
[79]  Fenton, N.J.; Bergeron, Y. Stochastic processes dominate during boreal bryophyte community assembly. Ecology 2013. in press.
[80]  Lavoie, M.; Paré, D.; Bergeron, Y. Impact of global change and forest management on carbon sequestration in northern forested peatlands. Environ. Rev. 2005, 13, 199–240, doi:10.1139/a05-014.
[81]  Drobyshev, I.; Simard, M.; Bergeron, Y.; Hofgaard, A. Does soil organic layer thickness affect climate-growth relationships in the black spruce boreal ecosystem? Ecosystems 2010, 13, 556–574, doi:10.1007/s10021-010-9340-7.
[82]  Nappi, A. Paludification. Fascicule 4.9. In Manuel de détermination des possibilités forestières 2013–2018; Bureau du forestier en chef, Gouvernement du Québec: Roberval, Canada, 2013.
[83]  Lindenmayer, D.B.; Franklin, J.F. Conserving Forest Biodiversity. A Comprehensive Multiscale Approach; Island Press: Washington, DC, USA, 2002; p. 351.
[84]  Swanson, F.J.; Sparks, R.E. Long-term ecological research and the invisible place. Bioscience 1990, 40, 502–508, doi:10.2307/1311318.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133