Following fertilization of forest plantations, high accumulations of nutrients in the forest floor creates the need to assess rates of forest floor decomposition and nutrient release. The study site was a 25-year old experimental loblolly pine plantation in the North Carolina Sandhills Region. Soluble and insoluble N, P, carbohydrate and phenol-tannin fractions were determined in foliage and litter by extraction with trichloroacetic acid. The long-term forest floor decomposition rate and decomposition and nutrient release in an experiment simulating removal of the overstory canopy were also determined. In litter, insoluble protein-N comprised 80%–90% of total-N concentration while soluble inorganic- and organic-P comprised 50%–75% of total-P concentration explaining forest floor N accumulations. Fertilization did not increase soluble carbohydrates in litter and forest floor decomposition rates. Loblolly pine forest floor decomposing in environmental conditions simulating removal of the overstory canopy was greatly accelerated and indicated 75% mass loss and release of 80% of the N pool within one year. This could result in a loss of substantial quantities of N at harvest due to low N uptake by seedlings in the newly planted next rotation suggesting management of the forest floor at harvest is essential to conserve site N capital in these N limited systems.
References
[1]
Allen, H.L. Forest fertilizers: Nutrient amendment, stand productivity, and environmental impact. J. For. 1987, 85, 37–46.
[2]
Fox, T.R.; Jokela, E.J.; Allen, H.L. The development of pine plantation silviculture in the southern US. J. For. 2007, 105, 337–347.
[3]
Albaugh, T.J.; Allen, H.L.; Dougherty, P.M.; Kress, L.W.; King, J.S. Leaf-area and above- and belowground growth responses of loblolly pine to nutrient and water additions. For. Sci. 1998, 44, 317–328.
Kiser, L.C.; Fox, T.R. Soil accumulation of nitrogen and phosphorus following annual fertilization of loblolly pine and sweetgum on sandy sites. Soil Sci. Soc. Am. J. 2012, 76, 2278–2288, doi:10.2136/sssaj2012.0118.
[6]
Polglase, P.J.; Comerford, N.B.; Jokela, E.J. Nitrogen and phosphorus release from decomposing needles of southern pine plantations. Soil Sci. Soc. Am. J. 1992, 56, 914–920, doi:10.2136/sssaj1992.03615995005600030039x.
[7]
Piatek, K.B.; Allen, H.L. Are forest floors in mid-rotation loblolly pine stands a sink for nitrogen and phosphorus? Can. J. For. Res. 2001, 31, 1164–1174, doi:10.1139/x01-049.
[8]
Sanchez, F. Loblolly pine needle decomposition and nutrient dynamics as affected by irrigation, fertilization, and substrate quality. For. Ecol. Manag. 2001, 152, 85–96, doi:10.1016/S0378-1127(00)00592-2.
[9]
Polglase, P.J.; Jokela, E.J.; Comerford, N.B. Phosphorus, nitrogen, and carbon fractions in litter and soil of southern pine plantations. Soil Sci. Soc. Am. J. 1992, 56, 566–572, doi:10.2136/sssaj1992.03615995005600020036x.
[10]
Polglase, P.J.; Comerford, N.B.; Jokela, E.J. Leaching of inorganic phosphorus from litter of southern pine plantations. Soil Sci. Soc. Am. J. 1992, 56, 573–577, doi:10.2136/sssaj1992.03615995005600020037x.
[11]
Prescott, C.E. Does N availability control rates of litter decomposition in forests? Plant Soil 1995, 168–169, 83–88, doi:10.1007/BF00029316.
[12]
Osono, T.; Ono, Y.; Takeda, H. Fungal ingrowth on forest floor and decomposing needle litter of Chamaecyparis obtusa in relation to resource availability and moisture condition. Soil Biol. Biochem. 2003, 35, 1423–1431, doi:10.1016/S0038-0717(03)00236-0.
[13]
Schimel, J.P.; Weintraub, M.N. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: A theoretical model. Soil Biol. Biochem. 2003, 35, 549–563, doi:10.1016/S0038-0717(03)00015-4.
[14]
Kalbitz, K.; Meyer, A.; Yang, R.; Gerstberger, P. Response of dissolved organic matter in the forest floor to long-term manipulation of litter and throughfall inputs. Biogeochemistry 2007, 86, 301–318, doi:10.1007/s10533-007-9161-8.
[15]
Klotzbucher, T.; Kaiser, K.; Guggenberger, G.; Gatzek, C.; Kalbitz, K. A new conceptual model for the fate of lignin in decomposing plant litter. Ecology 2011, 92, 1052–1062, doi:10.1890/i0012-9658-92-5-1052.
[16]
Adams, M.B.; Allen, H.L.; Davey, C.B. Accumulation of starch in roots and foliage of loblolly pine (Pinus taeda L.): Effects of season, site and fertilization. Tree Physiol. 1986, 2, 35–46, doi:10.1093/treephys/2.1-2-3.35.
[17]
Balsberg-Pahlsson, A. Influence of nitrogen fertilization on minerals, carbohydrates, amino acids, and phenolic compounds in beech (Fagus sylvatica L.) leaves. Tree Physiol. 1992, 10, 93–100, doi:10.1093/treephys/10.1.93.
[18]
Albaugh, T.J.; Allen, H.L.; Dougherty, P.M.; Johnsen, K.H. Long term growth responses of loblolly pine to optimal nutrient and water resource availability. For. Ecol. Manag. 2004, 192, 3–19, doi:10.1016/j.foreco.2004.01.002.
[19]
Albaugh, T.J.; Allen, H.L.; Fox, T.R. Nutrient use and uptake in Pinus taeda. Tree Physiol. 2008, 28, 1083–1098, doi:10.1093/treephys/28.7.1083.
[20]
Albaugh, T.J.; North Carolina State University, Raleigh, NC, USA. 2008.
[21]
Kedrowski, R.A. Extraction and analysis of nitrogen, phosphorus, and carbon fractions in plant material. J. Plant Nutr. 1983, 6, 989–1011, doi:10.1080/01904168309363161.
[22]
Keeny, D.R.; Nelson, D.W. Nitrogen–Inorganic Forms. In Methods of Soil Analysis Part 2, 2nd ed.; Page, A.L., Ed.; Agronomy Monograph: Madison, WI, USA, 1982; Volume 9, pp. 643–698.
[23]
Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36, doi:10.1016/S0003-2670(00)88444-5.
[24]
Dubois, M.; Giles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugar and related substances. Anal. Chem. 1956, 28, 350–356, doi:10.1021/ac60111a017.
[25]
Price, M.L.; Butler, L.G. Rapid visual estimation and spectrophotometric determination of tannin content of sorghum grain. J. Agric. Food Chem. 1977, 25, 1268–1273, doi:10.1021/jf60214a034.
[26]
Chapin, F.S., III; Kedrowski, R.A. Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology 1983, 64, 376–391, doi:10.2307/1937083.
[27]
Olson, J.S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 1963, 44, 322–331, doi:10.2307/1932179.
[28]
Schlesinger, W.H.; Hasey, M.M. Decomposition of chaparral shrub foliage: Losses of organic and inorganic constituents from deciduous and evergreen leaves. Ecology 1981, 62, 762–774, doi:10.2307/1937744.
[29]
Littell, R.C.; Henry, P.R.; Ammerman, C.B. Statistical analysis of repeated measures data using SAS Procedures. J. Anim. Sci. 1998, 76, 1216–1231.
[30]
Ballard, R. Effect of first rotation phosphorus applications on fertilizer requirements of second rotation pine. N. Z. J. For. Sci. 1978, 8, 135–145.
[31]
Gentle, S.W.; Humphreys, F.R.; Lambert, M.J. Continuing response of Pinus radiata to phosphate fertilizers over two rotations. For. Sci. 1986, 32, 822–829.
[32]
Comerford, N.B.; McLeod, M.; Skinner, M. Phosphorus form and bioavailability in the pine rotation following fertilization: P fertilization influences P form and potential bioavailability to pine in the subsequent rotation. For. Ecol. Manag. 2002, 169, 203–211, doi:10.1016/S0378-1127(01)00680-6.
[33]
Crous, J.W.; Morris, A.R.; Schole, M.C. The significance of residual phosphorus and potassium fertilization in countering yield decline in a fourth rotation of Pinus patula in Swaziland. South. Hemisph. For. J. 2007, 69, 1–8, doi:10.2989/SHFJ.2007.69.1.1.163.
[34]
Everett, C.J.; Palm-Leis, H. Availability of residual phosphorus fertilizer for loblolly pine. For. Ecol. Manag. 2009, 258, 2207–2213, doi:10.1016/j.foreco.2008.11.029.
[35]
Switzer, G.L.; Nelson, L.E. Nutrient accumulation and cycling in loblolly pine (Pinus taeda L.) plantation ecosystems: The first twenty years. Soil Sci. Soc. Am. J. 1972, 36, 143–147, doi:10.2136/sssaj1972.03615995003600010033x.
[36]
Austin, A.T.; Ballare, C.L. Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proc. Natl. Acad. Sci. USA 2010, 107, 4618–4622, doi:10.1073/pnas.0909396107.
[37]
Booker, F.L.; Maier, C.A. Atmospheric carbon dioxide, irrigation, and fertilization effects on phenolic and nitrogen concentrations in loblolly pine (Pinus taeda) needles. Tree Physiol. 2001, 21, 609–616, doi:10.1093/treephys/21.9.609.
[38]
Austin, A.T.; Vivanco, L. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 2006, 442, 555–558, doi:10.1038/nature05038.
[39]
Brandt, L.A.; King, J.Y.; Hobbie, S.E.; Milchunas, D.G.; Sinsabaugh, R.L. The role of photodegradation in surface litter decomposition across a grassland ecosystem precipitation gradient. Ecosystems 2010, 13, 765–781, doi:10.1007/s10021-010-9353-2.
[40]
Brandt, L.A.; Bohnet, C.; King, J.Y. Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems. J. Geophys. Res. 2009, 114, doi:10.1029/2008JG000772.
[41]
Vogt, K.A.; Grier, C.C.; Meier, C.E.; Keyes, M.R. Organic matter and nutrient dynamics in forest floors of young and mature Abies amabilis stands in western Washington, as affected by fine-root input. Ecol. Monogr. 1983, 53, 139–157, doi:10.2307/1942492.
[42]
Berg, B.; Staaf, H. Decomposition rate and chemical changes of Scots pine needle litter. II. Influence of chemical composition. Ecol. Bull. 1980, 32, 373–390.
[43]
Melillo, J.M.; Aber, J.D.; Linkins, A.E.; Ricca, A.; Fry, B.; Nadelhoffer, K.J. Carbon and nitrogen dynamics along the decay continuum: Plant litter to soil organic matter. Plant Soil 1989, 115, 189–198, doi:10.1007/BF02202587.
[44]
Berg, B.; Soderstrom, B. Fungal biomass and nitrogen in decomposing Scots pine needle litter. Soil Biol. Biochem. 1979, 11, 339–341, doi:10.1016/0038-0717(79)90045-2.
[45]
Tian, X.J.; Sun, S.C.; Ma, K.P.; An, S.Q. Behavior of carbon and nutrients within two types of leaf litter during 3.5 year decomposition. Acta Bot. Sin. 2003, 45, 1413–1420.
[46]
Jerabkova, L.; Prescott, C.E.; Kishchuk, B.E. Effect of variable-retention harvesting on soil nitrogen availability in boreal mixedwood forests. Can. J. For. Res. 2006, 36, 3029–3038, doi:10.1139/x06-175.
[47]
Martin, W.L.; Bradley, R.L.; Kimmins, J.P. Post-clearcutting chronosequence in the BCcoastal western hemlock zone: I. Changes in forest floor mass and N storage. J. Sustain. For. 2002, 14, 1–22.
[48]
Titus, B.D.; Prescott, C.E.; Maynard, D.G.; Mitchell, A.K.; Bradley, R.L.; Feller, M.C.; Beese, W.J.; Seely, B.A.; Benton, R.A.; Senyk, J.P.; et al. Post-harvest nitrogen cycling in clearcut and alternative silvicultural systems in a montane forest in coastal British Columbia. For. Chron. 2006, 82, 844–859.
[49]
Kim, C.; Sharik, T.L.; Jurgensen, M.F. Canopy cover effects on mass loss, and nitrogen and phosphorus dynamics from decomposing litter in oak and pine stands in northern Lower Michigan. For. Ecol. Manag. 1996, 80, 13–20, doi:10.1016/0378-1127(95)03653-9.
[50]
Prescott, C.E. The influence of the forest canopy on nutrient cycling. Tree Physiol. 2002, 22, 1193–1200, doi:10.1093/treephys/22.15-16.1193.
[51]
Vitousek, P.M.; Matson, P.A. Mechanisms of nitrogen retention in forest ecosystems: A field experiment. Science 1984, 225, 51–52.
[52]
Fox, T.R.; Burger, J.A.; Kreh, R.E. Effects of site preparation on nitrogen dynamics in the southern Piedmont. For. Ecol. Manag. 1986, 15, 241–256, doi:10.1016/0378-1127(86)90162-3.