全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Forests  2013 

The Utility of Image-Based Point Clouds for Forest Inventory: A Comparison with Airborne Laser Scanning

DOI: 10.3390/f4030518

Keywords: airborne laser scanning (ALS), LiDAR, forest inventory, area-based approach, point cloud, digital photogrammetry, semi-global matching (SGM), digital surface model (DSM)

Full-Text   Cite this paper   Add to My Lib

Abstract:

Airborne Laser Scanning (ALS), also known as Light Detection and Ranging (LiDAR) enables an accurate three-dimensional characterization of vertical forest structure. ALS has proven to be an information-rich asset for forest managers, enabling the generation of highly detailed bare earth digital elevation models (DEMs) as well as estimation of a range of forest inventory attributes (including height, basal area, and volume). Recently, there has been increasing interest in the advanced processing of high spatial resolution digital airborne imagery to generate image-based point clouds, from which vertical information with similarities to ALS can be produced. Digital airborne imagery is typically less costly to acquire than ALS, is well understood by inventory practitioners, and in addition to enabling the derivation of height information, allows for visual interpretation of attributes that are currently problematic to estimate from ALS (such as species, health status, and maturity). At present, there are two limiting factors associated with the use of image-based point clouds. First, a DEM is required to normalize the image-based point cloud heights to aboveground heights; however DEMs with sufficient spatial resolution and vertical accuracy, particularly in forested areas, are usually only available from ALS data. The use of image-based point clouds may therefore be limited to those forest areas that already have an ALS-derived DEM. Second, image-based point clouds primarily characterize the outer envelope of the forest canopy, whereas ALS pulses penetrate the canopy and provide information on sub-canopy forest structure. The impact of these limiting factors on the estimation of forest inventory attributes has not been extensively researched and is not yet well understood. In this paper, we review the key similarities and differences between ALS data and image-based point clouds, summarize the results of current research related to the comparative use of these data for forest inventory attribute estimation, and highlight some outstanding research questions that should be addressed before any definitive recommendation can be made regarding the use of image-based point clouds for this application.

References

[1]  Van Leeuwen, M.; Nieuwenhuis, M. Retreival of forest structural parameters using LiDAR remote sensing. Eur. J. For. Res. 2010, 129, 749–770, doi:10.1007/s10342-010-0381-4.
[2]  Lim, K.; Treitz, P.; Wulder, M.A.; St-Onge, B.; Flood, M. LiDAR remote sensing of forest structure. Prog. Phys. Geogr. 2003, 27, 88–106, doi:10.1191/0309133303pp360ra.
[3]  Reutebuch, S.E.; Andersen, H.-E.; McGaughey, R.J. Light detection and ranging (LIDAR): An emerging tool for multiple resource inventory. J. For. 2005, 103, 286–292.
[4]  Evans, D.L.; Roberts, S.D.; Parker, R.C. LiDAR–A new tool for forest measurements. For. Chron. 2006, 62, 211–219.
[5]  Wulder, M.A.; Bater, C.W.; Coops, N.C.; Hilker, T.; White, J.C. The role of LiDAR in sustainable forest management. For. Chron. 2008, 84, 807–826.
[6]  Hyypp?, J.; Hyypp?, H.; Leckie, D.; Gougeon, F.; Yu, X.; Maltamo, M. Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests. Int. J. Remote Sens. 2008, 29, 1339–1366, doi:10.1080/01431160701736489.
[7]  Leberl, F.; Irschara, A.; Pock, T.; Meixner, P.; Gruber, M.; Scholz, S.; Wiechert, A. Point clouds: LiDAR versus three-dimensional vision. Photogramm. Eng. Remote Sens. 2010, 76, 1123–1134.
[8]  Bohlin, J.; Wallerman, J.; Fransson, J.E.S. Forest variable estimation using photogrammetric matching of digital aerial images in combination with a high-resolution DEM. Scand. J. For. Res. 2012, 27, 692–699, doi:10.1080/02827581.2012.686625.
[9]  J?rnstedt, J.; Pekkarinen, A.; Tuominen, S.; Ginzler, C.; Holopainen, M.; Viitala, R. Forest variable estimation using a high-resolution digital surface model. ISPRS J. Photogramm. Remote Sens. 2012, 74, 78–84, doi:10.1016/j.isprsjprs.2012.08.006.
[10]  N?sset, E.; Gobakken, T.; Holmgren, J.; Hyypp?, H.; Hyypp?, J.; Maltamo, M.; Nilsson, M.; Olsson, H.; Persson, ?.; S?derman, U. Laser scanning of forest resources: The Nordic experience. Scand. J. For. Res. 2004, 19, 482–499, doi:10.1080/02827580410019553.
[11]  Stoker, J.M. Are we moving past the pixel? The third dimension in national landscape mapping. Photogramm. Eng. Remote Sens. 2013, 79, 133–134.
[12]  Wulder, M.A.; White, J.C.; Bater, C.W.; Coops, N.C.; Hopkinson, C.; Chen, G. Lidar plots—A new large-area data collection option: Context, concepts, and case study. Can. J. Remote Sens. 2012, 38, 600–618, doi:10.5589/m12-049.
[13]  Hyypp?, J.; Inkinen, M. Detecting and estimating attributes for single trees using laser scanner. Photogramm. J. Finl. 1999, 16, 27–42.
[14]  N?sset, E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens. Environ. 2002, 80, 88–99, doi:10.1016/S0034-4257(01)00290-5.
[15]  N?sset, E.; Bjerknes, K.-O. Estimating tree heights and number of stems in young forest stands using airborne laser scanner data. Remote Sens. Environ. 2001, 78, 328–340, doi:10.1016/S0034-4257(01)00228-0.
[16]  Lim, K.; Treitz, P.; Baldwin, K.; Morrison, I.; Green, J. Lidar remote sensing of biophysical properties of tolerant northern hardwood forests. Can. J. Remote Sens. 2003, 29, 658–678, doi:10.5589/m03-025.
[17]  Holmgren, J. Prediction of tree height, basal area, and stem volume in forest stands using airborne laser scanning. Scand. J. For. Res. 2004, 19, 543–553, doi:10.1080/02827580410019472.
[18]  Corona, P.; Fattorini, L. Area-based lidar-assisted estimation of forest standing volume. Can. J. For. Res. 2008, 38, 2911–2916, doi:10.1139/X08-122.
[19]  Rooker Jensen, J.L.; Humes, K.S.; Conner, T.; Williams, C.J.; DeGroot, J. Estimation of biophysical characteristics for highly variable mixed-conifer stands using small-footprint LiDAR. Can. J. For. Res. 2006, 36, 1129–1138, doi:10.1139/x06-007.
[20]  Hawbaker, T.J.; Gobakken, T.; Lesak, A.; Tr?mborg, E.; Contrucci, K.; Radeloff, V. Light detection and ranging-based measures of mixed hardwood forest structure. For. Sci. 2010, 56, 313–326.
[21]  Woods, M.; Pitt, D.; Penner, M.; Lim, K.; Nesbitt, D.; Etheridge, D.; Treitz, P. Operational implementation of a LiDAR inventory in boreal Ontario. For. Chron. 2011, 87, 512–528.
[22]  Lindberg, E.; Hollaus, M. Comparison of methods for estimation of stem volume, stem number, and basal area from airborne laser scanning data in a hemi-boreal forest. Remote Sens. 2012, 4, 1004–1023, doi:10.3390/rs4041004.
[23]  Nord-Larsen, T.; Schumacher, J. Estimation of forest resources from a country-wide laser scanning survey and national forest inventory data. Remote Sens. Environ. 2012, 119, 148–157, doi:10.1016/j.rse.2011.12.022.
[24]  N?sset, E. Airborne laser scanning as a method in operational forest inventory: Status of accuracy assessments accomplished in Scandinavia. Scand. J. For. Res. 2007, 22, 433–442, doi:10.1080/02827580701672147.
[25]  Wehr, A.; Lohr, U. Airborne laser scanning—An introduction and overview. ISPRS J. Photogramm. Remote Sens. 1999, 54, 68–82.
[26]  Dubayah, R.O.; Drake, J.B. LiDAR remote sensing for forestry. J. For. 2000, 98, 44–46.
[27]  Reutebuch, S.E.; McGaughey, R.J.; Andersen, H.-E.; Carson, W.W. Accuracy of a high-resolution lidar terrain model under a conifer forest canopy. Can. J. Remote Sens. 2003, 29, 527–535, doi:10.5589/m03-022.
[28]  Reutebuch, S.E.; McGaughey, R.J. LiDAR: An emerging tool for multiple resource measurement, planning, and monitoring. West. For. 2008, 53, 1–2.
[29]  Magnusson, M.; Fransson, J.E.S.; Holmgren, J. Effects on estimation accuracy of forest variables using different pulse density of laser data. For. Sci. 2007, 53, 619–626.
[30]  Treitz, P.; Lim, K.; Woods, M.; Pitt, D.; Nesbitt, D.; Etheridge, D. LiDAR sampling density for forest resource inventories in Ontario, Canada. Remote Sens. 2012, 4, 830–848, doi:10.3390/rs4040830.
[31]  Jakubowski, M.K.; Guo, Q.; Kelly, M. Tradeoffs between lidar pulse density and forest measurement accuracy. Remote Sens. Environ. 2013, 130, 245–253, doi:10.1016/j.rse.2012.11.024.
[32]  Gatziolis, D.; Fried, J.S.; Monleon, V.S. Challenges to estimating tree height via LiDAR in closed-canopy forests: A parable from western Oregon. For. Sci. 2010, 56, 139–155.
[33]  Tinkham, W.T.; Smith, A.M.S.; Hoffman, C.; Hudak, A.T.; Falkowski, M.J.; Swanson, M.E.; Gessler, P.E. Investigating the influence of LiDAR ground surface errors on the utility of derived forest inventories. Can. J. For. Res. 2012, 42, 413–422, doi:10.1139/x11-193.
[34]  Meng, X.; Currit, N.; Zhao, K. Ground filtering algorithms for airborne LiDAR data: A review of critical issues. Remote Sens. 2010, 2, 833–860, doi:10.3390/rs2030833.
[35]  McGaughey, R.J. FUSION/LDV: Software for LiDAR Data Analysis and VisualizationFebruary 2013–FUSION Version 3.30. USDA Forest Service, Pacific Northwest Research Station, University of Washington: Seattle, WA, USA, 2013. Available online: http://www.forsys.cfr.washington.edu/fusion/FUSION_manual.pdf (accessed on 15 May 2013).
[36]  Lillesand, T.M.; Kiefer, R.W. Remote Sensing and Image Interpretation, 2nd ed. ed.; John Wiley and Sons: New York, NY, USA, 1987.
[37]  Korpela, I. Individual tree measurements by means of digital aerial photogrammetry. Silva Fennica Monogr. 2004, 3, 93.
[38]  Gagnon, P.A.; Agnard, J.P.; Nolette, C. Evaluation of a soft-copy photogrammetry system for tree plot measurements. Can. J. For. Res. 1993, 23, 1781–1785, doi:10.1139/x93-225.
[39]  Hall, R.J. The Roles of Aerial Photographs in Forestry Remote Sensing Image Analysis. In Remote Sensing of Forest Environments: Concepts and Case Studies; Wulder, M.A., Franklin, S.E., Eds.; Kluwer Academic Publishers: London, UK, 2003; pp. 47–77.
[40]  Zitová, B.; Flusser, J. Image registration methods: A survey. Image Vis. Comput. 2003, 21, 977–1000, doi:10.1016/S0262-8856(03)00137-9.
[41]  Baltsavias, E.; Gruen, A.; Eisenbeiss, H.; Zhang, L.; Waser, L.T. High-quality image matching and automated generation of three-dimensional tree models. Int. J. Remote Sens. 2008, 29, 1243–1259, doi:10.1080/01431160701736513.
[42]  Haala, N.; Hastedt, H.; Wolf, K.; Ressl, C.; Baltrusch, S. Digital photogrammetric camera evaluation—Generation of digital elevation models. Photogramm Fernerkun. 2010, 2, 99–115.
[43]  Gehrke, S.; Morin, K.; Downey, M.; Boehrer, N.; Fuchs, T. Semi-Global Matching: An Alternative to LiDAR for DSM Generation? In Proceedings of the 2010 Canadian Geomtics Conference and Symposium of Commission I, ISPRS Convergence in Geomatics–Shaping Canada’s Competitive Landscape, Calgary, Canada, 15–18 June 2010; Available online: http://www.isprs.org/proceedings/XXXVIII/part1/11/11_01_Paper_121.pdf (accessed on 21 January 2013).
[44]  Hirshmüller, H. Stereo processing by semi-global matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 328–341, doi:10.1109/TPAMI.2007.1166.
[45]  St-Onge, B.; Vega, C.; Fournier, R.A.; Hu, Y. Mapping canopy height using a combination of digital stereo-photogrammetry and lidar. Int. J. Remote Sens. 2008, 29, 3343–3364.
[46]  Zimble, D.A.; Evans, D.L.; Carlson, G.C.; Parker, R.C.; Grado, S.C.; Gerard, P.D. Characterizing vertical forest structure using small-footprint airborne LiDAR. Remote Sens. Environ. 2003, 87, 171–182, doi:10.1016/S0034-4257(03)00139-1.
[47]  Baltsavias, E. A comparison between photogrammetry and laser scanning. ISPRS J. Photogramm. Remote Sens. 1999, 54, 83–94, doi:10.1016/S0924-2716(99)00014-3.
[48]  Lim, K.; Hopkinson, C.; Treitz, P. Examining the effects of sampling point densities on laser canopy height and density metrics. For. Chron. 2008, 84, 876–885.
[49]  Hodgson, M.E.; Bresnahan, P. Accuracy of airborne lidar-derived elevation: Empirical assessment and error budget. Photogramm. Eng. Remote Sens. 2004, 70, 331–339.
[50]  Persson, A.; Holmgren, J.; Soderman, U. Detecting and measuring individual trees using an airborne laser scanner. Photogramm. Eng. Remote Sens. 2002, 68, 925–932.
[51]  Andersen, H.E.; Reutebuch, S.E.; McGaughey, R.J. A rigorous assessment of tree heigh measurements obtained using airborne lidar and conventional field methods. Can. J. Remote Sens. 2006, 32, 355–366, doi:10.5589/m06-030.
[52]  Kaartinen, H.; Hyypp?, J.; Yu, X.; Vastaranta, M.; Hyypp?, H.; Kukko, A.; Holopainen, M.; Heipke, C.; Hirschmugl, M.; Morsdorf, F.; et al. An international comparison of individual tree detection and extraction using airborne laser scanning. Remote Sens. 2012, 4, 950–974, doi:10.3390/rs4040950.
[53]  N?sset, E. Determination of mean tree height of forest stands using airborne laser scanner data. ISPRS J. Photogramm. Remote Sens. 1997, 52, 49–56, doi:10.1016/S0924-2716(97)83000-6.
[54]  Magnussen, S.; Boudewyn, P. Derivations of stand heights from airborne laser scanner data with canopy-based quantile estimators. Can. J. For. Res. 1998, 28, 1016–1031, doi:10.1139/x98-078.
[55]  Magnussen, S.; Eggermont, P.; LaRiccia, V. Recovering tree heights from airborne laser scanner data. For. Sci. 1999, 45, 407–422.
[56]  N?sset, E.; ?kland, T. Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve. Remote Sens. Environ. 2002, 79, 105–115, doi:10.1016/S0034-4257(01)00243-7.
[57]  Maltamo, M.; Eerik?inen, K.; Packalén, P.; Hyypp?, J. Estimation of stem volume using laser scanning-based canopy height metrics. Forestry 2006, 79, 217–230, doi:10.1093/forestry/cpl007.
[58]  Coops, N.C.; Hilker, T.; Wulder, M.A.; St-Onge, B.; Newnham, G.; Siggins, A.; Trofymow, J.A. Estimating canopy structure of douglas-fir forest stands from discrete-return LiDAR. Trees 2007, 21, 295–310.
[59]  Pitt, D.; Pineau, J. Forest inventory research at the Canadian Wood Fibre Centre: Notes from a research coordination workshop, 3–4 June 2009, Point Claire, QC. For. Chron. 2009, 85, 859–869.
[60]  Eid, T.; Gobakken, T.; N?sset, E. Comparing stand inventories for large areas based on photo-interpretation and laser scanning by means of cost-plus-loss analyses. Scand. J. For. Res. 2004, 19, 512–523, doi:10.1080/02827580410019463.
[61]  White, B.; Ogilvie, J.; Campbell, D.M.H.; Hiltz, D.; Gauthier, B.; Chisholm, H.K.; Wen, H.K.; Murphy, P.N.C.; Arp, P.A. Use of a cartographic depth-to-water index to locate small streams and associated wet areas across landscapes. Can. Water Resour. J. 2012, 37, 333–347, doi:10.4296/cwrj2011-909.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133