The objective of this study was to compare organic carbon (C) accumulation in plantations (PL) and natural succession (NS) established on fallow lands along a 50-year chronosequence in the eastern mixed forest subzone of Quebec (Canada). Above- and below-ground woody biomass were estimated from vegetation measurement surveys, and litter and soil (0–50 cm depth) C from samplings. At the year of abandonment, total C content of both PL and NS sites averaged 100 ± 13 Mg C ha ?1. Over 50 years, total C content doubled on NS sites and tripled on PL sites (217.9 ± 28.7 vs. 285.7 ± 31.0 Mg ha ?1) with respect to fallow land. On NS sites, the new C stocks accumulated entirely in the vegetation. On PL sites, C accumulated mostly in the vegetation and to a lesser extent in the litter, whereas it decreased by a third in the soil. As a result, the net C accumulation rate was 1.7 ± 0.7 Mg ha ?1 yr ?1 greater on PL sites than on NS sites over 50 years. By the 23rd year, PL sites became greater net C sinks than NS sites in the fallow lands of the study area, even with the loss of soil C.
References
[1]
Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007; Cambridge University Press: Cambridge, UK, 2007.
[2]
Metz, B.; Davidson, O.R.; Bosch, P.R.; Dave, R.; Meyer, L.A. Climate Change 2007: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007; Cambridge University Press: Cambridge, UK, 2007.
[3]
Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627, doi:10.1126/science.1097396.
[4]
McLauchlan, K. The nature and longevity of agricultural impacts on soil carbon and nutrients: A review. Ecosystems 2006, 9, 1364–1382, doi:10.1007/s10021-005-0135-1.
[5]
Rey Benayas, J.M.; Martins, A.; Nicolau, J.M.; Schulz, J.J. Abandonment of agricultural land: An overview of drivers and consequences. CAB Rev. Perspect. Agri., Vet. Sci., Nutr. Nat. Resour. 2007, 2, 057:1–057:14.
[6]
Parson, H.E. Regional trends of agricultural restructuring in Canada. Can. J. Reg. Sci. 1999, 22, 343–356.
[7]
Vouligny, C.; Gariépy, S. Abandoned Farmland in Quebec—Status and Development Options; Agriculture and Agri-Food Canada: Ottawa, Canada, 2008.
[8]
Food and Agriculture Organization (FAO). State of the World’s Forests 2011; FAO: Rome, Italy, 2011. Available online: http://www.fao.org/docrep/013/i2000e/i2000e00.htm (accessed on 10 May 2013).
[9]
Lugo, A.E. The apparent paradox of re-establishing species richness on degraded lands with tree monocultures. For. Ecol. Manage. 1997, 99, 9–19, doi:10.1016/S0378-1127(97)00191-6.
[10]
Chazdon, R.I. Beyond deforestation : Restoring forests and ecosystem services on degraded lands. Science 2008, 320, 1458–1460, doi:10.1126/science.1155365.
[11]
Cuesta, B.; Rey Benayas, J.M.; Gallardo, A.; Villar-Salvador, P.; Gonzales-Espinosa, M. Soil chemical properties in abandoned Mediterranean cropland after succession and oak reforestation. Acta Oecologica 2012, 38, 58–65, doi:10.1016/j.actao.2011.09.004.
Foote, R.L.; Grogan, P. Soil carbon accumulation during temperate forest succession on abandoned low productivity agricultural lands. Ecosystems 2010, 13, 795–812, doi:10.1007/s10021-010-9355-0.
[14]
Van Minnen, J.G.; Strengers, B.J.; Eickhout, B.; Swart, R.J.; Leemans, R. Quantifying the effectiveness of climate change mitigation through forest plantations and carbon sequestration with an integrated land-use model. Carbon Balance Manage. 2008, 3, 3, doi:10.1186/1750-0680-3-3.
[15]
Betts, R.A. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 2000, 408, 187–190, doi:10.1038/35041545.
[16]
Schaeffer, M.; Eickhout, B.; Hoogwijk, M.; Strengers, B.; van Vuuren, D.; Leemans, R.; Opsteegh, T. CO2 and albedo climate impacts of extra-tropical carbon and biomass plantations. Global Biogeochem. Cycles 2006, 20, doi:10.1029/2005GB002581.
[17]
White, T.M.; Kurz, W.A. Afforestation on private land in Canada from 1990 to 2002 estimated from historical records. For. Chron. 2005, 81, 491–497.
[18]
Tremblay, S.; Périé, C.; Ouimet, R. Changes in organic carbon storage in a 50 year white spruce plantation chronosequence established on fallow land in Quebec. Can. J. For. Res. 2006, 36, 2713–2723, doi:10.1139/x06-076.
[19]
Ouimet, R.; Tremblay, S.; Périé, C.; Prégent, G. Ecosystem carbon accumulation following fallow farmland afforestation with red pine in southern Quebec. Can. J. For. Res. 2007, 37, 1118–1133, doi:10.1139/X06-297.
[20]
Saucier, J.-P.; Bergeron, J.-F.; Grondin, P.; Robitaille, A. Les régions écologiques du Québec méridional (3e version): un des éléments du système hiérarchique de classification du territoire mis au point par le ministère des Ressources naturelles du Québec, Québec, Canada. Supplément de l’Aubelle; Gouvernement du Québec: Québec, Canada, 1998.
[21]
No?l, J. Relations entre la végétation, le milieu physique, les perturbations naturelles et le climat dans le Québec méridional, documents cartographiques: Tome 1. Le système hiérarchique de classification écologique du MRNQ, le milieu physique, les perturbations naturelles et le climat; Ministère des Ressources naturelles, Direction de la recherche forestière, Gouvernement du Québec: Québec, Canada, 2002.
[22]
Robitaille, A.; Saucier, J.-P. Land district, eco-physiographic units and areas: The landscape mapping of the Ministère des Ressources naturelles du Québec. Environ. Monit. Assess. 1996, 39, 127–148, doi:10.1007/BF00396141.
[23]
Soil Classification Working Group. The Canadian System of Soil Classification, 3rd ed. ed.; Agriculture and Agri-Food Canada: Ottawa, Canada, 1998.
[24]
Federer, C.A.; Turcotte, D.E.; Smith, C.T. The organic fraction-bulk density relationship and the expression of nutrient content in forest soils. Can. J. For. Res. 1993, 23, 1026–1032, doi:10.1139/x93-131.
[25]
Li, Z.; Kurz, W.A.; Apps, M.J.; Beukema, S.J. Belowground biomass dynamics in the Carbon Budget Model of the Canadian Forest Sector: recent improvements and implications for the estimation of NPP and NEP. Can. J. For. Res. 2003, 33, 126–136, doi:10.1139/x02-165.
[26]
IPCC National Greenhouse Gas Inventories Programme. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Hayama, Japan, 2006; Volume 4.
[27]
Tremblay, S.; Ouimet, R.; Houle, D. Prediction of organic carbon content in upland forest soils of Quebec, Canada. Can. J. For. Res. 2002, 32, 903–914, doi:10.1139/x02-023.
[28]
Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Vegan: Community Ecology Package. R Package Version 2.0-9, 2013. Available online: http://CRAN.R-project.org/package=vegan (accessed on 1 October 2013).
[29]
Pinheiro, J.; Bates, D.; Sarkar, D.; R Development Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-103, 2012. Available online: http://CRAN.R-project.org/package=nlme (accessed on 1 September 2013).
[30]
R Development Core Team. R: A language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2012.
[31]
Jackson, R.; Canadell, J.; Ehleringer, J.; Mooney, H.A.; Sala, O.; Schulze, E. A global analysis of root distributions for terrestrial biomes. Oecologia 1996, 108, 389–411, doi:10.1007/BF00333714.
[32]
Thuille, A.; Schulze, E.D. Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps. Glob. Change Biol. 2006, 12, 325–342, doi:10.1111/j.1365-2486.2005.01078.x.
[33]
Anderson, K.J.; Allen, A.P.; Gillooly, J.F.; Brown, J.H. Temperature-dependence of biomass accumulation rates during secondary succession. Ecol. Lett. 2006, 9, 673–682, doi:10.1111/j.1461-0248.2006.00914.x.
[34]
Ruskule, A.; Nikodemus, O.; Kasparinska, Z.; Kasparinskis, R.; Brumelis, G. Patterns of afforestation on abandoned agriculture land in Latvia. Agrofor. Syst. 2012, 85, 215–231, doi:10.1007/s10457-012-9495-7.
[35]
Harmer, R.; Peterken, G.; Kerr, G.; Poulton, G. Vegetation changes during 100 years of development of two secondary woodlands on abandoned arable land. Biol. Conserv. 2001, 100, 291–304.
[36]
Sirami, C.; Brotons, L.; Martin, J.L. Vegetation and songbird response to land abandonment: From landscape to census plot. Diversity Distrib. 2007, 13, 42–52.
[37]
Bonet, A.; Pausas, J.G. Species richness and cover along a 60-year chronosequence in old-fields of southeastern Spain. Plant Ecol. 2004, 174, 257–270, doi:10.1023/B:VEGE.0000049106.96330.9c.
[38]
Ontario Ministry Natural Resources (OMNR). A Silvicultural Guide for the Tolerant Hardwood Forest in Ontario; Queen’s Printer for Ontario: Toronto, Canada, 1998.
Zhang, K.; Dang, H.; Tan, S.; Wang, Z.; Zhang, Q. Vegetation community and soil characteristics of abandoned agricultural land and pine plantation in the Qinling Mountains, China. For. Ecol. Manage. 2010, 259, 2036–2047, doi:10.1016/j.foreco.2010.02.014.
Li, D.; Niu, S.; Luo, Y. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: A meta-analysis. New Phytol. 2012, 195, 172–181, doi:10.1111/j.1469-8137.2012.04150.x.
[43]
Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: a meta analysis. Glob. Change Biol. 2002, 8, 345–360, doi:10.1046/j.1354-1013.2002.00486.x.
[44]
Laganière, J.; Angers, D.A.; Paré, D. Carbon accumulation in agricultural soils after afforestation: A meta-analysis. Glob. Change Biol. 2010, 16, 439–453, doi:10.1111/j.1365-2486.2009.01930.x.
[45]
Shi, S.; Zhang, W.; Zhang, P.; Yu, Y.; Ding, F. A synthesis of change in deep soil organic carbon stores with afforestation of agricultural soils. For. Ecol. Manage. 2013, 296, 53–63, doi:10.1016/j.foreco.2013.01.026.
[46]
Poeplau, C.; Don, A.; Vesterdal, L.; Leifeld, J.; van Wesemael, B.; Schumaker, J.; Gensior, A. Temporal dynamics of soil organic carbon after land-use change in the temperate zone—Carbon response functions as a model approach. Glob. Change Biol. 2011, 17, 2415–2427, doi:10.1111/j.1365-2486.2011.02408.x.
[47]
Guo, L.B.; Wang, M.; Gifford, R.M. The change of soil carbon stocks and fine root dynamics after land use change from a native pasture to a pine plantation. Plant Soil 2007, 299, 251–262, doi:10.1007/s11104-007-9381-7.
[48]
Binkley, D.; Kaye, J.; Barry, M.; Ryan, M.G. First-rotation changes in soil carbon and nitrogen in a plantation in Hawaii. Soil Sci. Soc. Am. J. 2004, 68, 1713–1719, doi:10.2136/sssaj2004.1713.
[49]
Resh, S.C.; Binkley, D.; Parotta, J.A. Greater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus species. Ecosystems 2002, 5, 217–231, doi:10.1007/s10021-001-0067-3.
[50]
Polglase, P.J.; Paul, K.I.; Khana, P.K.; Nyakuengama, J.G.; O’Connell, A.M.; Grove, T.S.; Battaglia, M. Change in Soil Carbon Following Afforestation or Reforestation; National Carbon Accounting System Tech Report No. 20; Australian Greenhouse Office: Canberra, Australia, 2000.
[51]
Ellert, B.H.; Bettany, J.R. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can. J. Soil Sci. 1995, 75, 529–538, doi:10.4141/cjss95-075.
[52]
National Inventory Report 1990–2011: Greenhouse Gas Sources and Sinks in Canada. Part 3; Environment Canada: Gatineau, Canada, 2013.
[53]
Roy, M. Ministère des Ressources naturelles: Québec, Canada, 2006.