In the field of biomass and bio-energy production, an analysis was performed of the whole production process from biomass supply to bio-energy production. The available biomass, harvesting and transportation costs and the distribution of supply area were quantified. The assessment of volumes was based on forest type and its relative increment. The transportation costs, influenced by different species-specific and site-specific factors, were calculated by integrating data in a geographic information system (GIS). The economic values calculated were the main economic indicators ( net present value (NPV), internal rate of return (IRR) and Payback Period). The results show that: (a) there is a good supply of forest biomass across most of the territory of Basilicata region, Italy; (b) the harvesting and transportation costs are dependent on biomass density and distances; (c) there are strong margins for economic profits at the level of each single supply basin; and (d) the endogenous value added was estimated to about 150 seasonal workers.
References
[1]
It is worthwhile considering that Italy currently spends about € 62 billion per year in foreign energy supply (Ministry of Economic Development, MEC, 2013). The new National Energy Strategy, approved by the MEC, provides for a reduction of about € 14 billion per year, lowering the foreign dependence from 84% to 67%, thanks to energy efficiency, rise in production and transformation of renewable energies.
[2]
Pistorius, T.; Schaich, H.; Winkel, G.; Plieninger, T.; Bieling, C.; Konold, W.; Volz, KR. Lessons for REDDplus: A comparative analysis of the German discourse on forest functions and the global ecosystem services debate. For. Policy Econ. 2012, 18, 4–12, doi:10.1016/j.forpol.2011.09.001.
Demirbas, A. Political, economic and environmental impacts of biofuels: A review. Appl. Energy 2009, 86, 108–117, doi:10.1016/j.apenergy.2009.04.036.
[5]
World Energy Agency. Available online: http://www.worldenergyoutlook.org/publications/weo-2012/ (accessed on 14 May 2013).
[6]
The Fifth Energy Bill defines the new incentive schemes for the production of electric energy from photovoltaic sources.
[7]
The Heating Bill defines the incentives on small-scale plants to increase energy efficiency and produce thermal energy from renewable sources.
[8]
Frascarelli, A. Le energie rinnovabili in agricoltura. Agriregionieuropa 2011, 7, 1–9.
[9]
Boroushaki, S.; Malczewski, J. Measuring consensus for collaborative decision-making: A GIS-based approach. Comput. Environ. Urban Syst. 2010, 34, 322–332, doi:10.1016/j.compenvurbsys.2010.02.006.
[10]
Brown, G.; Weber, D. Public participation GIS: A new method for national park planning. Landsc. Urban Plan. 2011, 102, 1–15, doi:10.1016/j.landurbplan.2011.03.003.
[11]
Arampatzis, G.; Kiranoudis, C.T.; Scaloubacas, P.; Assimacopoulos, D. A GIS-based decision support system for planning urban transportation policies. Eur. J. Oper. Res. 2004, 152, 465–475, doi:10.1016/S0377-2217(03)00037-7.
[12]
Chen, N.; Li, H.; Wang, L. A GIS-based approach for mapping direct use value of ecosystem services at a county scale: Management implications. Ecol. Econ. 2009, 68, 2768–2776, doi:10.1016/j.ecolecon.2008.12.001.
[13]
Lu, J.; Guldmann, J.M. Landscape ecology, land-use structure and population density: Case study of the Columbus Metropolitan Area. Landsc. Urban Plan. 2012, 105, 74–85, doi:10.1016/j.landurbplan.2011.11.024.
[14]
Fernandes, U.; Costa, M. Potential of biomass residues for energy production and utilization in a region of Portugal. Biomass Bioenerg. 2010, 34, 661–666, doi:10.1016/j.biombioe.2010.01.009.
[15]
Kurka, T.; Jefferies, C.; Blackwood, D. Gis-based location suitability of decentralized, medium scale bioenergy developments to estimate transport CO2 emissions and costs. Biomass Bioenerg. 2012, 46, 366–379, doi:10.1016/j.biombioe.2012.08.004.
[16]
Thomas, A.; Bond, A.; Hiscock, K. A GIS based assessment of bioenergy potential in England within existing energy system. Biomass Bioenerg. 2013, 55, 107–121, doi:10.1016/j.biombioe.2013.01.010.
[17]
Fiorese, G.; Guariso, G. A Gis-based approach to evaluate biomass potential from energy crops at regional scale. Environ. Modelling e Softw. 2009, 25, 702–711, doi:10.1016/j.envsoft.2009.11.008.
[18]
Ghilardi, A.; Guerrero, G.; Masera, O. A GIS-based methodology for highlighting fuelwood supply/demand imbalances at the local level: A case study for Central Mexico. Biomass Bioenerg. 2009, 33, 957–972, doi:10.1016/j.biombioe.2009.02.005.
[19]
Kinoshita, T.; Inoue, K.; Iwao, K.; Kagemoto, H. A spatial evaluation of forest biomass usage using GIS. Appl. En. 2009, 86, 1–8, doi:10.1016/j.apenergy.2008.03.017.
[20]
Beccali, M.; Columba, P.; D’Alberti, V.; Franzitta, V. Assessment of bioenergy potential in Sicily: A Gis-based support methodology. Biomass Bioenerg. 2009, 1, 79–87.
[21]
Tenerelli, P.; Carver, S. Multi-criteria, multi-objective and uncertainty analysis for agro-energy spatial modeling. Appl. Geogr. 2012, 32, 724–736, doi:10.1016/j.apgeog.2011.08.013.
[22]
Tenerelli, P.; Monteleone, M. A Combined Land-Crop Multicriteria Evaluation for Agro-Energy Planning. In Proceedings of the Paper Presented at the 16th BIOMASS Conference, Valencia, Spain, 2–6 June 2008; ETA-Renewabre Energies: Florence, Italy, 2008.
[23]
Tenerelli, P.; Pantaleo, A.; Carone, M.T.; Pellerano, A.; Recchia, L. Spatial, Environmental and Economic Modeling of Energy Crop Routes: Liquid vs Solid Biomass to Electricity Chains in Puglia Region. In proceediongs of the Paper Presented at the 15th European Biomass Conference, Berlin, Germany, 17–18 May 2007; ETA-Renewabre Energies: Florence, Italy, 2007.
[24]
Perpina, C.; Llario, J.C.M.; Navarro, A.P. Multicriteria assessment in GIS environments for siting biomass plants. Land Use Policy 2013, 31, 326–335, doi:10.1016/j.landusepol.2012.07.014.
[25]
Zhang, F.; Johnson, D.M.; Sutherland, J.W. A GIS-based method for identifying the optimal location for a facility to convert forest biomass to biofuel. Biomass Bioenerg. 2011, 35, 3951–3961.
[26]
Cozzi, M. Agro-energie in Basilicata: un approccio analitico per la valutazione dei costi di trasporto. Aestimum 2008, 53, 51–74.
[27]
Perpina, C.; Alfornso, D.; Perez-Navarro, A.; Penalvo, E.; Vargas, C.; Cardenas, R. Methodology based on Geographic Information System for biomass logistic and transport optimization. Renew. En. 2009, 34, 555–565, doi:10.1016/j.renene.2008.05.047.
[28]
Burrogh, P.A.; McDonnel, R.A. Principles of Geographical Information Systems; Oxford University Press: New York, NY, USA, 1998; pp. 21–27.
[29]
Parker, H.D. The unique qualities of a geographic information system: A commentary. Photogramm. Eng. Remote Sens. 1988, 54, 1547–1549.
[30]
Koshkariov, A.V.; Tikunov, V.S.; Trofimov, A.M. The current state main trends in the development of geographical information system in the USSR. Int. J. Geogr. Inf. Syst. 1989, 3, 257–272, doi:10.1080/02693798908941512.
[31]
INEA (Istituto Nazionale di Economia Agraria). Carta Forestale Regionale; INEA: Basilicata, Italy, 2006.
[32]
Antoniotti, G.B. Tavola auxometrica del cerro del Molise; Ricerche sperimentali di dendrometria e auxometria: Firenze, Italy, 1950; Volume volumn 1, p. 44.
[33]
Castellani, C. Il saggio di accrescimento e di utilizzazione delle fustaie sottoposte ad assestamento. Ital. For. e Mont. 1966, 5, 197–205.
[34]
Castellani, C. I boschi cedui sottoposti ad assestamento in Italia: i turni, gli incrementi e le utilizzazioni. Ital. For. e Mont. 1967, 4, 179–186.
[35]
Castellani, C. Tavole stereometriche e alsometriche costruite per i boschi Italiani; Istituto Sperimentale per l’Assestamento Forestale e l’Alpicoltura: Trento, Italy, 1970; Volume Volumn 1, pp. 1–431.
[36]
Castellani, C.; Ghidini, G.; Tosi, V. Tavole dendrometriche e alsometriche per il pino d’Aleppo; Istituto Sperimentale per l’Assestamento Forestale e l’Alpicoltura: Trento, Italy, 1980–1982; Volume Volumn 8, pp. 3–44.
[37]
Ciancio, O.; Maetzche, F.; Portoghesi, L. I cedui di faggio e misti del comune di Borgo Velino. In Valorizzazione energetica di materiali legnosi nel Lazio; ENEA, Università della Tuscia: Viterbo, Italy, 1990; pp. 201–220.
[38]
De Philippis, A.; Bernetti, G. Lezioni di selvicoltura speciale; CUSL: Firenze, Italy, 1990.
[39]
Famiglietti, A.; Fusco, G.; Pierangeli, D. I querceti in Basilicata: Aspetti selvicolturali ed economici. Reg. Basil. Not. 1998, 3, 51–58.
[40]
La Marca, O. Ricerche dendrometriche ed auxometriche sui cedui di Castagno (Castanea sativa Mill.) della Valle dell’Irno (AV e SA). Accad. Ital. Sci. For. 1981, 30, 3–44.
[41]
Leccese, A. Prodromi di tipologia forestale per le fascie montana e submontana del Lazio. Ph.D. Thesis, Università degli Studi della Tuscia, 2000.
[42]
Given the total lack of local market for timber from these bioma.
[43]
Istituto Sperimentale Assestamento Forestale e Alpicoltura. Tavole Stereometriche ed Alsometriche Costruite per i Boschi Italiani; ISAFA: Trento, Italy, 1980.
[44]
Pettenella, D.; Favero, M. Disponibilità di Sottoprodotti Legnosi Impiegabili a Fini Energetici. In I Sottoprodotti di Interesse del DM 6.7.2012—Inquadramento, Potenzialità e Valutazioni; Comitato Termotecnico Italiano (CTI): Milano, Italy, 2013; Volume 1, pp. 21–33.
[45]
Collection cost is the cost to collect the biomass from the field in scattered form near the transport unit for its loading.
[46]
Singh, J.; Panesar, B.S.; Sharma, S.K. A mathematical model for transporting the biomass to biomass based power plant. Biomass Bioenerg. 2010, 34, 483–488, doi:10.1016/j.biombioe.2009.12.012.
[47]
The landing, namely the place where the biomass is loaded on trucks, may be done roadside. Therefore, the assumed landing site is the road axis close to municipal and district roads, which can be driven on by trucks.
[48]
Brun, F.; Furlan, G. Studio dei costi di produzione e stima del prezzo minimo del cippato di legno per usi energetic; Università degli Studi di Torino: Grugliasco, Torino, Italy, 2000.
[49]
Garfì, V.; Lasserre, B.; Chirici, G.; Tonti, D.; Ottaviano, M.; Puletti, N.; Palombo, C.; Marchetti, M. Stima spazialmente definita della produttività potenziale delle risorse agro-forestali per uso energetico: il caso di studio della regione Molise. L’Ital. For. e Mont. 2011, 66, 283–292.
[50]
Gilanipoor, N.; Najafi, A.; Heshmat Alvaezin, S.M. Productivity and cost of farm tractor skidding. J. For. Sci. 2012, 58, 21–26.
[51]
Hippoliti, G.; Piegai, F. Tecniche e Sistemi di Lavoro. La Raccolta del Legno; Compagnia delle Foreste: Arezzo, Italy, 2000.
[52]
Spinelli, R.; Nati, C.; Magagnotti, N. Raccolta di Legno Cippato Dalle Giovani Peccete Artificali del Feltrino; CNR, Istituto per la ricerca sul legno: Firenze, Italy, 2003.
[53]
Verani, S.; Sperandio, G.; Picchio, R.; Savelli, S. La Raccolta Della Biomassa Forestale, Tecniche, Economia e Sicurezza del Lavoro; Grafica Salaria: Monterotondo, Roma, Italy, 2009; pp. 6–49.
[54]
Neri, F.; Piegai, F. Produttività e costi di trasformazione nell’utilizzazione di materiale legnoso in biomassa (chips). L’Ital. For. e Mont. 2007, 62, 385–398.
[55]
Daskin, M.S. Network and Discrete Location: Models, Algorithms and Application; Wiley-Interscience Publication: New York, USA, 1995; pp. 309–363.
[56]
Drezner, Z.; Hamacher, H.W. Facility Location: Applications and Theory; Springer-Velgar: Berlin, Germany, 2001; pp. 233–271.
[57]
Freppaz, D.; Minciardi, R.; Robba, M.; Rovatti, M.; Sacile, R.; Taramasso, A. Optimizing forest biomass exploitation for energy supply at a regional level. Biomass Bioenerg. 2004, 20, 101–112.
[58]
Panichelli, L.; Gnansounou, E. A GIS-based approach to evaluate biomass potential from energy crops at regional scale. Environ. Model. Softw. 2008, 25, 702–711.
[59]
Vianaa, H.; Warren Cohenb, B.; Lopesc, D.; Aranhac, J. Assessment of forest biomass for use as energy. GIS-based analysis of geographical availability and locations of wood-fired power plants in Portugal. Appl. En. 2010, 87, 2551–2560, doi:10.1016/j.apenergy.2010.02.007.
[60]
Moller, B.; Nielsen, P.S. Analysing transport costs of Danish forest wood chip resources by means of continuous cost surfaces. Biomass Bioenerg. 2007, 31, 291–298, doi:10.1016/j.biombioe.2007.01.018.
[61]
Romano, S.; Cozzi, M.; Luongo, V.; Pesce, F. La Valutazione dei Costi di Trasporto Delle Biomasse Agroforestali: Funzioni e Mappatura dei Costi su Base Geografica. In Proceedings of the Atti del III Congresso Nazionale di Selvicoltura, Taormina, Sicilia, 16–19 October 2008; Accademia Italiana di Scienze Forestali: Firenze, Italy, 2009; pp. 902–908.
[62]
Romano, S.; Ventura, G.; Luongo, V. L’uso dei Sistemi Informativi Territoriali nella pianificazione delle risorse forestali: L’offerta di biomassa per fini energetici dai cedui di una realtà territoriale Montana; Ciancio, O., Nocentini, S., Eds.; Accademia Italiana di Scienze Forestali: Florence, Italy, 2004; pp. 613–668.
[63]
Klass, D.L. Biomass for Renewable Energy, Fuels and Chemicals; Academic Press: San Diego, CA, USA, 1998; pp. 193–211.
[64]
McKendry, P. Energy production from biomass: conversion technologies. Bioresour. Technol. 2002, 83, 47–54, doi:10.1016/S0960-8524(01)00119-5.
[65]
By costs we mean both forest processing costs (cut and preparation, costs for the direction, surveillance and administration, extraction and chipping) and woodchip transportation costs.
[66]
This value has also been chosen in consideration of the current regional trends. In the Basilicata region there are running cogeneration facilities, which supply contracts to potential plant biomass owners, whose unit purchase values depend on the moisture and calorific value of the product. Fresh woodchips, delivered. within few days after cutting, are paid at 5.5–7 €/q. The range depends on the availability, the seasonal weather patterns and the kind of existing contract.
[67]
Experiences conducted across the national territory show how the cutting of woody materials in winter and the chipping at the end of summer enable a 25% reduction of the WC with a calorific value of 3700 kWht.
[68]
Bernetti, I.; Fagarazzi, C. Valutazione Della Domanda di Biocombustibili Solidi (legno cippato) Nell’area dell’appennino Pistoiese; Centro Editoriale Toscano: Florence, Italy, 2008; pp. 7–165.
[69]
Energy Strategy Group (Politecnico di Milano). Biomass Energy Report 2012, Le bioenergie in Italia alla prova del Decreto Rinnovabili, Politecnico di Milano. 2012. Available online: http://www.energystrategy.it/report/biomasse.html (accessend on 20 September 2013).
[70]
The extent of the district heating system, taking account of all variables that might affect their length, was estimated to 1500 m.