Correlation analyses were carried out for the dynamics of leaf water potential in two broad-leaf deciduous tree species in a sandy site under a range of air vapor pressure deficits and a relatively dry range of soil conditions. During nights when the soil is dry, the diffuse-porous, isohydric and shallow-rooted Acer rubrum does not recharge its xylem and leaf water storage to the same capacity that is observed during nights when the soil is moist. The ring-porous, deep-rooted Quercus rubra displays a more anisohydric behavior and appears to be capable of recharging to capacity at night-time even when soil moisture at the top 1 m is near wilting point, probably by accessing deeper soil layers than A. rubrum. Compared to A. rubrum, Q. rubra displays only a minimal level of down-regulation of stomatal conductance, which leads to a reduction of leaf water potential during times when vapor pressure deficit is high and soil moisture is limiting. We determine that the two species, despite typically being categorized by ecosystem models under the same plant functional type—mid-successional, temperate broadleaf—display different hydraulic strategies. These differences may lead to large differences between the species in water relations, transpiration and productivity under different precipitation and humidity regimes.
References
[1]
Bates, B.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J. Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change; IPCC Secretariat: Geneva, Switzerland, 2008; p. 210.
[2]
Bovard, B.D.; Curtis, P.S.; Vogel, C.S.; Su, H.B.; Schmid, H.P. Environmental controls on sap flow in a northern hardwood forest. Tree Physiol. 2005, 25, 31–38, doi:10.1093/treephys/25.1.31.
[3]
Perry, D.A.; Oren, R.; Hart, S.C. Forest Ecosystems; The Johns Hopkins University Press: Baltimore, MD, USA, 2008; p. 632.
[4]
Lambers, H.; Chapin, F.S.; Pons, T.L. Plant Physiological Ecology, 2nd ed. ed.; Springer: New York, NY, USA, 2008; p. 640.
[5]
Bradford, K.J.; Hsiao, T.C. Physiological Responses to Moderate Water Stress. In Physiological Plant Ecology; Lange, O.L., Nobel, P.S., Osmond, C.B., Zieler, H., Eds.; Springer-Verlag: New York, NY, USA, 1982; pp. 263–324.
[6]
Sperry, J.S. Relationship of xylem embolism to xylem pressure potential, stomatal closure, and shoot morphology in the palm Rhapis excelsa. Plant Physiol. 1986, 80, 110–116, doi:10.1104/pp.80.1.110.
[7]
Sperry, J.S.; Tyree, M.T. Mechanism of water stress-induced xylem embolism. Plant Physiol. 1988, 88, 581–587, doi:10.1104/pp.88.3.581.
[8]
Sperry, J.S. Hydraulic constraints on plant gas exchange. Agric. For. Meteorol. 2000, 104, 13–23, doi:10.1016/S0168-1923(00)00144-1.
Litvak, E.; McCarthy, H.R.; Pataki, D.E. Transpiration sensitivity of urban trees in a semi-arid climate is constrained by xylem vulnerability to cavitation. Tree Physiol. 2012, 32, 373–388, doi:10.1093/treephys/tps015.
[11]
Sperry, J.S.; Hacke, U.G.; Oren, R.; Comstock, J.P. Water deficits and hydraulic limits to leaf water supply. Plant Cell Environ. 2002, 25, 251–263, doi:10.1046/j.0016-8025.2001.00799.x.
[12]
Bond, B.J.; Kavanagh, K.L. Stomatal behavior of four woody species in relation to leaf-specific hydraulic conductance and threshold water potential. Tree Physiol. 1999, 19, 503–510, doi:10.1093/treephys/19.8.503.
[13]
Oren, R.; Pataki, D.E. Transpiration in response to variation in microclimate and soil moisture in southeastern deciduous forests. Oecologia 2001, 127, 549–559, doi:10.1007/s004420000622.
[14]
Ford, C.R.; Hubbard, R.M.; Vose, J.M. Quantifying structural and physiological controls on variation in canopy transpiration among planted pine and hardwood species in the southern Appalachians. Ecohydrology 2011, 4, 183–195, doi:10.1002/eco.136.
[15]
Larcher, W. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups; Springer-Verlag: Berlin, Germany, 1997; p. 513.
[16]
Pallardy, S.G.; Rhoads, J.L. Mophological adaptations to drought in seedlings of deciduous angiosperms. Can. J. For. Res. 1993, 23, 1766–1774, doi:10.1139/x93-223.
[17]
Hacke, U.G.; Sperry, J.S.; Pockman, W.T.; Davis, S.D.; McCulloch, K.A. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 2001, 126, 457–461, doi:10.1007/s004420100628.
[18]
Taneda, H.; Sperry, J.S. A case-study of water transport in co-occurring ring- vs. diffuse-porous trees: Contrasts in water-status, conducting capacity, cavitation and vessel refilling. Tree Physiol. 2008, 28, 1641–1651, doi:10.1093/treephys/28.11.1641.
[19]
Maherali, H.; Moura, C.F.; Caldeira, M.C.; Willson, C.J.; Jackson, R.B. Functional coordination between leaf gas exchange and vulnerability to xylem cavitation in temperate forest trees. Plant Cell Environ. 2006, 29, 571–583, doi:10.1111/j.1365-3040.2005.01433.x.
[20]
Tyree, M.T.; Zimmermann, M.H. Xylem Structure and the Ascent of Sap. Springer: Berlin, Germany, 2002; p. 279.
[21]
Meinzer, F.C.; Woodruff, D.R.; Eissenstat, D.M.; Lin, H.S.; Adams, T.S.; McCulloh, K.A. Above- and belowground controls on water use by trees of different wood types in an eastern US deciduous forest. Tree Physiol. 2013, 33, 345–356, doi:10.1093/treephys/tpt012.
[22]
Ivanov, V.Y.; Hutyra, L.R.; Wofsy, S.C.; Munger, J.W.; Saleska, S.R.; de Oliveira, R.C.; de Camargo, P.B. Root niche separation can explain avoidance of seasonal drought stress and vulnerability of overstory trees to extended drought in a mature Amazonian forest. Water Resour. Res. 2012, 48, doi:10.1029/2012WR011972.
[23]
Nave, L.; Gough, C.M.; Maurer, K.; Bohrer, G.; Hardiman, B.S.; Le Moine, J.; Munoz, A.; Nadelhoffer, K.J.; Sparks, J.P.; Strahm, B.; et al. Disturbance and the resilience of coupled carbon and nitrogen cycling in a north temperate forest. J. Geophys. Res. 2011, 116, doi:10.1029/2011JG001758.
[24]
Gough, C.M.; Hardiman, B.S.; Nave, L.E.; Bohrer, G.; Maurer, K.D.; Vogel, C.S.; Nadelhoffer, K.J.; Curtis, P.S. Sustained carbon uptake and storage following moderate disturbance in a Great Lakes forest. Ecol. Appl. 2013, 23, 1202–1215, doi:10.1890/12-1554.1.
[25]
He, L.; Ivanov, V.Y.; Bohrer, G.; Thomsen, J.E.; Vogel, C.S.; Moghaddam, M. Temporal dynamics of soil moisture in a northern temperate mixed successional forest after a prescribed intermediate disturbance. Agric. For. Meteorol. 2013, 180, 22–33, doi:10.1016/j.agrformet.2013.04.014.
[26]
Schmid, H.P.; Su, H.B.; Vogel, C.S.; Curtis, P.S. Ecosystem-Atmosphere exchange of carbon dioxide over a mixed hardwood forest in northern lower Michigan. J. Geophys. Res. 2003, 108, doi:10.1029/2002JD003011.
[27]
Pressley, S.; Lamb, B.; Westberg, H.; Flaherty, J.; Chen, J.; Vogel, C. Long-Term isoprene flux measurements above a northern hardwood forest. J. Geophys. Res. 2005, 110, doi:10.1029/2004JD005523.
[28]
Sutterley, T. Personal communication. University of Michigan Biological Station: Pellston, MI, USA, 2010.
[29]
Maurer, K.D.; Hardiman, B.S.; Vogel, C.S.; Bohrer, G. Canopy-Structure effects on surface roughness parameters: Observations in a Great Lakes mixed-deciduous forest. Agric. For. Meteorol. 2013, 177, 24–34, doi:10.1016/j.agrformet.2013.04.002.
[30]
Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898, doi:10.2136/sssaj1980.03615995004400050002x.
[31]
He, L.; Ivanov, V.Y.; Bohrer, G.; Maurer, K.D.; Vogel, C.S.; Moghaddam, M. Effects of fine-scale soil moisture and canopy heterogeneity on energy and water fluxes in a northern temperate mixed forest. Agric. For. Meteorol. 2014, 184, 243–256, doi:10.1016/j.agrformet.2013.10.006.
[32]
Bréda, N.; Granier, A.; Barataud, F.; Moyne, C. Soil-Water dynamics in an oak stand. I. Soil-Moisture, water potentials and water-uptake by roots. Plant Soil 1995, 172, 17–27, doi:10.1007/BF00020856.
[33]
Jackson, R.B.; Moore, L.A.; Hoffmann, W.A.; Pockman, W.T.; Linder, C.R. Ecosystem rooting depth determined with caves and DNA. Proc. Natl. Acad. Sci. USA 1999, 96, 11387–11392, doi:10.1073/pnas.96.20.11387.
[34]
Barnes, B.V.; Wagner, W.H. Michigan Trees, Revised and Updated: A Guide to the Trees of the Great Lakes Region; University of Michigan Press: Ann Arbor, MI, USA, 2004; p. 456.
[35]
Cubera, E.; Moreno, G. Effect of single Quercus ilex trees upon spatial and seasonal changes in soil water content in dehesas of central western Spain. Ann. For. Sci. 2007, 64, 355–364, doi:10.1051/forest:2007012.
[36]
Elfving, D.C.; Hall, A.E.; Kaufmann, M.R. Interpreting leaf water potential measurements with a model of soil-plant-atmosphere continuum. Physiol. Plant. 1972, 27, 161–170, doi:10.1111/j.1399-3054.1972.tb03594.x.
[37]
Turner, N.C.; Schulze, E.D.; Gollan, T. The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content. 1. Species comparisons at high soil water contents. Oecologia 1984, 63, 338–342, doi:10.1007/BF00390662.
[38]
McDowell, N.; Pockman, W.T.; Allen, C.D.; Breshears, D.D.; Cobb, N.; Kolb, T.; Plaut, J.; Sperry, J.; West, A.; Williams, D.G.; et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytol. 2008, 178, 719–739, doi:10.1111/j.1469-8137.2008.02436.x.
[39]
Ni, B.-R.; Pallardy, S.G. Response of liquid flow resistance to soil drying in seedlings of four deciduous angiosperms. Oecologia 1990, 84, 260–264.
[40]
Cruiziat, P.; Cochard, H.; Améglio, T. Hydraulic architecture of trees: Main concepts and results. Ann. For. Sci. 2002, 59, 723–752, doi:10.1051/forest:2002060.
[41]
Manzoni, S.; Vico, G.; Katul, G.G.; Palmroth, S.; Jackson, R.B.; Porporato, A. Hydraulic limits on maximum plant transpiration and the emergence of the safety-efficiency tradeoff. New Phytol. 2013, 198, 169–178, doi:10.1111/nph.12126.
[42]
Whitehead, D.; Edwards, W.R.N.; Jarvis, P.G. Conducting sapwood area, foliage area, and permeability in mature trees of Picea sitchensis and Pinus contorta. Can. J. For. Res. 1984, 14, 940–947, doi:10.1139/x84-166.
[43]
Magnani, F.; Mencuccini, M.; Grace, J. Age-Related decline in stand productivity: The role of structural acclimation under hydraulic constraints. Plant Cell Environ. 2000, 23, 251–263, doi:10.1046/j.1365-3040.2000.00537.x.
[44]
Bohrer, G.; Mourad, H.; Laursen, T.A.; Drewry, D.; Avissar, R.; Poggi, D.; Oren, R.; Katul, G.G. Finite-Element Tree Crown Hydrodynamics model (FETCH) using porous media flow within branching elements—A new representation of tree hydrodynamics. Water Resour. Res. 2005, 41, doi:10.1029/2005WR004181.
[45]
Zeppel, M.; Macinnis-Ng, C.; Palmer, A.; Taylor, D.; Whitley, R.; Fuentes, S.; Yunusa, I.; Williams, M.; Eamus, D. An analysis of the sensitivity of sap flux to soil and plant variables assessed for an Australian woodland using a soil-plant-atmosphere model. Funct. Plant Biol. 2008, 35, 509–520, doi:10.1071/FP08114.
[46]
Janott, M.; Gayler, S.; Gessler, A.; Javaux, M.; Klier, C.; Priesack, E. A one-dimensional model of water flow in soil-plant systems based on plant architecture. Plant Soil 2011, 341, 233–256, doi:10.1007/s11104-010-0639-0.