全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Forests  2013 

Above-Ground Biomass and Biomass Components Estimation Using LiDAR Data in a Coniferous Forest

DOI: 10.3390/f4040984

Keywords: above-ground biomass, biomass components, LiDAR, coniferous forest, Qilian Mountain

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study aims to estimate forest above-ground biomass and biomass components in a stand of Picea crassifolia (a coniferous tree) located on Qilian Mountain, western China via low density small-footprint airborne LiDAR data. LiDAR points were first classified into ground points and vegetation points. After, vegetation statistics, including height quantiles, mean height, and fractional cover were calculated. Stepwise multiple regression models were used to develop equations that relate the vegetation statistics from field inventory data with field-based estimates of biomass for each sample plot. The results showed that stem, branch, and above-ground biomass may be estimated with relatively higher accuracies; estimates have adjusted R 2 values of 0.748, 0.749, and 0.727, respectively, root mean squared error (RMSE) values of 9.876, 1.520, and 15.237 Mg·ha ?1, respectively, and relative RMSE values of 12.783%, 12.423%, and 14.163%, respectively. Moreover, fruit and crown biomass may be estimated with relatively high accuracies; estimates have adjusted R 2 values of 0.578 and 0.648, respectively, RMSE values of 1.022 and 5.963 Mg·ha ?1, respectively, and relative RMSE values of 23.273% and 19.665%, respectively. In contrast, foliage biomass estimates have relatively low accuracies; they had an adjusted R 2 value of 0.356, an RMSE of 3.691 Mg·ha ?1, and a relative RMSE of 26.953%. Finally, above-ground biomass and biomass component spatial maps were established using stepwise multiple regression equations. These maps are very useful for updating and modifying forest base maps and registries.

References

[1]  Zhao, F.; Guo, Q.; Kelly, M. Allometric equation choice impacts Lidar-based forest biomass estimates: A case study from the Sierra National Forest, CA. Agric. For. Meteorol. 2012, 165, 64–72, doi:10.1016/j.agrformet.2012.05.019.
[2]  Salas, C.; Ene, L.; Gregoire, T.G.; Naesset, E.; Gobakken, T. Modelling tree diameter from airborne laser scanning derived variables: A comparison of spatial statistical models. Remote Sens. Environ. 2010, 114, 1277–1285, doi:10.1016/j.rse.2010.01.020.
[3]  Ahmed, R.; Siqueira, P.; Hensley, S. A study of forest biomass estimates from Lidar in the northern temperate forests of New England. Remote Sens. Environ. 2013, 130, 121–135, doi:10.1016/j.rse.2012.11.015.
[4]  Allouis, T.; Durrieu, S.; Vega, C.; Couteron, P. Stem volume and above-ground biomass estimation of individual pine trees from LiDAR data: Contribution of full-waveform signals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 924–934, doi:10.1109/JSTARS.2012.2211863.
[5]  Ene, L.T.; Naesset, E.; Gobakken, T.; Gregoire, T.G.; Stahl, G.; Holm, S. A simulation approach for accuracy assessment of two-phase post-stratified estimation in large-area LiDAR biomass surveys. Remote Sens. Environ. 2013, 133, 210–224, doi:10.1016/j.rse.2013.02.002.
[6]  Popescu, S.C.; Zhao, K.; Neuenschwander, A.; Lin, C. Satellite Lidar vs. small footprint airborne lidar: Comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level. Remote Sens. Environ. 2011, 115, 2786–2797, doi:10.1016/j.rse.2011.01.026.
[7]  Kankare, V.; Vastaranta, M.; Holopainen, M.; Raety, M.; Yu, X.; Hyyppa, J.; Hyyppa, H.; Alho, P.; Viitala, R. Retrieval of forest aboveground biomass and stem volume with airborne scanning LiDAR. Remote Sens. 2013, 5, 2257–2274, doi:10.3390/rs5052257.
[8]  Wulder, M.A.; White, J.C.; Nelson, R.F.; Naesset, E.; Orka, H.O.; Coops, N.C.; Hilker, T.; Bater, C.W.; Gobakken, T. LiDAR sampling for large-area forest characterization: A review. Remote Sens. Environ. 2012, 121, 196–209, doi:10.1016/j.rse.2012.02.001.
[9]  Kim, Y.; Chang, A.; Kim, Y.; Song, J.; Kim, C. Estimation of forest biomass from airborne LiDAR data as measures against Global Warming-Individual Tree Unit and Forest Stand Unit. Disaster Adv. 2012, 5, 295–299.
[10]  D’Oliveira, M.V.N.; Reutebuch, S.E.; McGaughey, R.J.; Andersen, H.-E. Estimating forest biomass and identifying low-intensity logging areas using airborne scanning Lidar in Antimary State Forest, Acre State, Western Brazilian Amazon. Remote Sens. Environ. 2012, 124, 479–491, doi:10.1016/j.rse.2012.05.014.
[11]  Gonzalez, P.; Asner, G.P.; Battles, J.J.; Lefsky, M.A.; Waring, K.M.; Palace, M. Forest carbon densities and uncertainties from LiDAR, QuickBird, and field measurements in California. Remote Sens. Environ. 2010, 114, 1561–1575, doi:10.1016/j.rse.2010.02.011.
[12]  Sexton, J.O.; Bax, T.; Siqueira, P.; Swenson, J.J.; Hensley, S. A comparison of Lidar, radar, and field measurements of canopy height in pine and hardwood forests of southeastern North America. For. Ecol. Manag. 2009, 257, 1136–1147, doi:10.1016/j.foreco.2008.11.022.
[13]  Nelson, R.F.; Hyde, P.; Johnson, P.; Emessiene, B.; Imhoff, M.L.; Campbell, R.; Edwards, W. Investigating RaDAR-LiDAR synergy in a North Carolina pine forest. Remote Sens. Environ. 2007, 110, 98–108, doi:10.1016/j.rse.2007.02.006.
[14]  Hajnsek, I.; Kugler, F.; Lee, S.-K.; Papathanassiou, K.P. Tropical-forest-parameter estimation by means of Pol-InSAR: The INDREX-II campaign. IEEE Trans. Geosci. Remote Sens. 2009, 47, 481–493, doi:10.1109/TGRS.2008.2009437.
[15]  Asner, G.P.; Mascaro, J.; Muller-Landau, H.C.; Vieilledent, G.; Vaudry, R.; Rasamoelina, M.; Hall, J.S.; van Breugel, M. A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 2012, 168, 1147–1160, doi:10.1007/s00442-011-2165-z.
[16]  He, Q.-S.; Cao, C.-X.; Chen, E.-X.; Sun, G.-Q.; Ling, F.-L.; Pang, Y.; Zhang, H.; Ni, W.-J.; Xu, M.; Li, Z.-Y.; et al. Forest stand biomass estimation using ALOS PALSAR data based on LiDAR-derived prior knowledge in the Qilian Mountain, western China. Int. J. Remote Sens. 2012, 33, 710–729, doi:10.1080/01431161.2011.577829.
[17]  Santos, J.R.; Freitas, C.C.; Araujo, L.S.; Dutra, L.V.; Mura, J.C.; Gama, F.F.; Soler, L.S.; Sant’Anna, S.J.S. Airborne P-band SAR applied to the aboveground biomass studies in the Brazilian tropical rainforest. Remote Sens. Environ. 2003, 87, 482–493, doi:10.1016/j.rse.2002.12.001.
[18]  Lambert, M.C.; Ung, C.H.; Raulier, F. Canadian national tree aboveground biomass equations. Can. J. For. Res. 2005, 35, 1996–2018, doi:10.1139/x05-112.
[19]  Saatchi, S.; Halligan, K.; Despain, D.G.; Crabtree, R.L. Estimation of forest fuel load from radar remote sensing. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1726–1740, doi:10.1109/TGRS.2006.887002.
[20]  Tsui, O.W.; Coops, N.C.; Wulder, M.A.; Marshall, P.L.; McCardle, A. Using multi-frequency radar and discrete-return LiDAR measurements to estimate above-ground biomass and biomass components in a coastal temperate forest. ISPRS J. Photogramm. Remote Sens. 2012, 69, 121–133, doi:10.1016/j.isprsjprs.2012.02.009.
[21]  Tian, X.; Su, Z.; Chen, E.; Li, Z.; van der Tol, C.; Guo, J.; He, Q. Estimation of forest above-ground biomass using multi-parameter remote sensing data over a cold and arid area. Int. J.Appl. Earth Obs. Geoinf. 2012, 14, 160–168, doi:10.1016/j.jag.2011.09.010.
[22]  He, Q.; Xu, H.; Zhang, Y. Estimation of Forest Biophysical Parameters Using Small-Footprint LiDAR with low Density in a Coniferous Forest. In Proceedings of International Symposium on Lidar and Radar Mapping 2011: Technologies and Applications, Nanjing, China, 26–29 May 2011; Volume 8286.
[23]  Zhou, Y.; Zhu, Q.; Chen, J.M.; Wang, Y.Q.; Liu, J.; Sun, R.; Tang, S. Observation and simulation of net primary productivity in Qilian Mountain, western China. J. Environ. Manag. 2007, 85, 574–584, doi:10.1016/j.jenvman.2006.04.024.
[24]  Wang, J.Y.; Ju, K.J.; Fu, H.E.; Chang, X.X.; He, H.Y. Study on biomass of water conservation forest on North Slope of Qilian Mountains. J. Fujian Coll. For. 1998, 18, 319–323.
[25]  Chan, N.; Takeda, S.; Suzuki, R.; Yamamoto, S. Establishment of allometric models and estimation of biomass recovery of swidden cultivation fallows in mixed deciduous forests of the Bago Mountains, Myanmar. For. Ecol. Manag. 2013, 304, 427–436, doi:10.1016/j.foreco.2013.05.038.
[26]  Kenzo, T.; Furutani, R.; Hattori, D.; Kendawang, J.J.; Tanaka, S.; Sakurai, K.; Ninomiya, I. Allometric equations for accurate estimation of above-ground biomass in logged-over tropical rainforests in Sarawak, Malaysia. J. For. Res. 2009, 14, 365–372, doi:10.1007/s10310-009-0149-1.
[27]  Kenzo, T.; Ichie, T.; Hattori, D.; Itioka, T.; Handa, C.; Ohkubo, T.; Kendawang, J.J.; Nakamura, M.; Sakaguchi, M.; Takahashi, N.; et al. Development of allometric relationships for accurate estimation of above- and below-ground biomass in tropical secondary forests in Sarawak, Malaysia. J. Trop. Ecol. 2009, 25, 371–386, doi:10.1017/S0266467409006129.
[28]  Axelsson, P.E. Processing of laser scanner data—Algorithms and applications. ISPRS J. Photogramm. Remote Sens. 1999, 54, 138–147, doi:10.1016/S0924-2716(99)00008-8.
[29]  Kraus, K.; Pfeifer, N. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS J. Photogramm. Remote Sens. 1998, 53, 193–203, doi:10.1016/S0924-2716(98)00009-4.
[30]  Means, J.E.; Acker, S.A.; Fitt, B.J.; Renslow, M.; Emerson, L.; Hendrix, C.J. Predicting forest stand characteristics with airborne scanning Lidar. Photogramm. Eng. Remote Sens. 2000, 66, 1367–1371.
[31]  Treitz, P.; Lim, K.; Woods, M.; Pitt, D.; Nesbitt, D.; Etheridge, D. LiDAR sampling density for forest resource inventories in Ontario, Canada. Remote Sens. 2012, 4, 830–848, doi:10.3390/rs4040830.
[32]  Naesset, E. Practical large-scale forest stand inventory using a small-footprint airborne scanning laser. Scand. J. For. Res. 2004, 19, 164–179, doi:10.1080/02827580310019257.
[33]  Cao, C.; Bao, Y.; Xu, M.; Chen, W.; Zhang, H.; He, Q.; Li, Z.; Guo, H.; Li, J.; Li, X.; et al. Retrieval of forest canopy attributes based on a geometric-optical model using airborne LiDAR and optical remote-sensing data. Int. J. Remote Sens. 2012, 33, 692–709, doi:10.1080/01431161.2011.577830.
[34]  Li, Y.; Andersen, H.-E.; McGaughey, R. A Comparison of statistical methods for estimating forest biomass from light detection and ranging data. West. J. Appl. For. 2008, 23, 223–231.
[35]  Vincent, G.; Sabatier, D.; Blanc, L.; Chave, J.; Weissenbacher, E.; Pelissier, R.; Fonty, E.; Molino, J.F.; Couteron, P. Accuracy of small footprint airborne LiDAR in its predictions of tropical moist forest stand structure. Remote Sens. Environ. 2012, 125, 23–33, doi:10.1016/j.rse.2012.06.019.
[36]  O’Brien, R.M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 2007, 41, 673–690, doi:10.1007/s11135-006-9018-6.
[37]  Popescu, S.C.; Wynne, R.H.; Nelson, R.F. Measuring individual tree crown diameter with Lidar and assessing its influence on estimating forest volume and biomass. Can. J. Remote Sens. 2003, 29, 564–577, doi:10.5589/m03-027.
[38]  Lim, K.; Treitz, P.; Baldwin, K.; Morrison, I.; Green, J. Lidar remote sensing of biophysical properties of tolerant northern hardwood forests. Can. J. Remote Sens. 2003, 29, 658–678, doi:10.5589/m03-025.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133