全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Fibers  2013 

Mechanical Reinforcement of Wool Fiber through Polyelectrolyte Complexation with Chitosan and Gellan Gum

DOI: 10.3390/fib1030047

Keywords: mechanical properties, polyelectrolyte complex, chitosan, gellan gum, wool

Full-Text   Cite this paper   Add to My Lib

Abstract:

The formation of polyelectrolyte complex (PEC) wool fibers formed by dipping chitosan or gellan gum-treated wool fibers into biopolymer solutions of opposite charge is reported. Treating wool fibers with chitosan (CH) and gellan gum (GG) solutions containing food dyes resulted in improved mechanical characteristics compared to wool fibers. In contrast, pH modification of the solutions resulted in the opposite effect. The mechanical characteristics of PEC-treated fibers were affected by the order of addition, i.e., dipping GG-treated fibers into chitosan resulted in mechanical reinforcement, whereas the reverse-order process did not.

References

[1]  Hoogeveen, N.G.; Cohen Stuart, M.A.; Fleer, G.J.; B?hmer, M.R. Formation and stability of multilayers of polyelectrolytes. Langmuir 1996, 12, 3675–3681, doi:10.1021/la951574y.
[2]  Woelki, S.; Kohler, H.-H. Effect of dispersion forces on the potential of charged interfaces. Chem. Phys. 2004, 306, 209–217, doi:10.1016/j.chemphys.2004.07.028.
[3]  Miller, M.D.; Bruening, M.L. Controlling the nanofiltration properties of multilayer polyelectrolyte membranes through variation of film composition. Langmuir 2004, 20, 11545–11551, doi:10.1021/la0479859.
[4]  Van Den Beucken, J.J.J.P.; Vos, M.R.J.; Thüne, P.C.; Hayakawa, T.; Fukushima, T.; Okahata, Y.; et al. Fabrication, characterization, and biological assessment of multilayered DNA-coatings for biomaterial purposes. Biomaterials 2006, 27, 691–701, doi:10.1016/j.biomaterials.2005.06.015.
[5]  Tang, Z.; Wang, Y.; Podsiadlo, P.; Kotov, N.A. Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering. Adv. Mater. 2006, 18, 3203–3224, doi:10.1002/adma.200600113.
[6]  Jiao, Y.-P.; Cui, F.-Z. Surface modification of polyester biomaterials for tissue engineering. Biomed. Mater. 2007, 2, doi:10.1088/1748-6041/2/4/R02.
[7]  K?hler, K.; Sukhorukov, G.B. Heat Treatment of polyelectrolyte multilayer capsules: a versatile method for encapsulation. Adv. Funct. Mater. 2007, 17, 2053–2061, doi:10.1002/adfm.200600593.
[8]  Bertrand, P.; Jonas, A.; Laschewsky, A.; Legras, R. Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromol. Rapid Comm. 2000, 21, 319–348, doi:10.1002/(SICI)1521-3927(20000401)21:7<319::AID-MARC319>3.0.CO;2-7.
[9]  Po?owiński, S. Deposition of polymer complex layers onto nonwoven textiles. J. Appl. Polym. Sci. 2007, 103, 1700–1705, doi:10.1002/app.25099.
[10]  Stefan, P. Nonwoven fabrics modified with deposited nanolayers. Polimery 2007, 52, 357–361.
[11]  Stefan, Po?owiński; Stawski, D. Thermogravimetric measurements of poly(propylene) nonwovens containing deposited layers of polyelectrolytes and colloidal particles of noble metals. Fibres Text. East. Eur. 2007, 15, 82–85.
[12]  Dubas, S.T.; Kumlangdudsana, P.; Potiyaraj, P. Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids and Surfaces A: Physicochem. Eng. Asp. 2006, 289, 105–109, doi:10.1016/j.colsurfa.2006.04.012.
[13]  Agullo, E.; Rodriguez, M.S.; Ramos, V.; Albertengo, L. Present and future role of chitin and chitosan in food. Macromol. Biosci. 2003, 3, 521–530, doi:10.1002/mabi.200300010.
[14]  Giavasis, I.; Harvey, L.M.; McNeil, B. Gellan Gum. Cr. Rev. Biotechn. 2000, 20, 177–211, doi:10.1080/07388550008984169.
[15]  Smith, A.M.; Shelton, R.M.; Perrie, Y.; Harris, J.J. An initial evaluation of gellan gum as a material for tissue engineering applications. J. Biomater. Appl. 2007, 22, 241–254, doi:10.1177/0885328207076522.
[16]  Amaike, M.; Senoo, Y.; Yamamoto, H. Sphere, honeycomb, regularly spaced droplet and fiber structures of polyion complexes of chitosan and gellan. Macromol. Rapid Comm. 1998, 19, 287–289, doi:10.1002/(SICI)1521-3927(19980601)19:6<287::AID-MARC287>3.0.CO;2-X.
[17]  Yamamoto, H.; Horita, C.; Senoo, Y.; Nishida, A.; Ohkawa, K. Polyion complex fiber and capsule formed by self-assembly of poly-L-Lysine and gellan at solution interfaces. J. Appl. Polym. Sci. 2001, 79, 437–446, doi:10.1002/1097-4628(20010118)79:3<437::AID-APP60>3.0.CO;2-Q.
[18]  Yamamoto, H.; Ohkawa, K.; Nakamura, E.; Miyamoto, K.; Komai, T. Preparation of polyion complex capsule and fiber of chitosan and gellan-sulfate at aqueous interface. Bull. Chem. Soc. Jpn. 2003, 76, 2053–2057, doi:10.1246/bcsj.76.2053.
[19]  Ohkawa, K.; Kitagawa, T.; Yamamoto, H. Preparation and characterization of chitosan-gellan hybrid capsules formed by self-assembly at an aqueous solution interface. Macromol. Mater Eng. 2004, 289, 33–40, doi:10.1002/mame.200300188.
[20]  Meier, C.; Welland, M.E. Wet-Spinning of amyloid protein nanofibers into multifunctional high-performance biofibers. Biomacromolecules 2011, 12, 3453–3459, doi:10.1021/bm2005752.
[21]  Amin, K.A.M.; Panhuis, Mih. Polyelectrolyte complex materials from chitosan and gellan gum. Carbohyd. Polym. 2011, 86, 352–358, doi:10.1016/j.carbpol.2011.04.035.
[22]  Mat Amin, K.A.; Gilmore, K.J.; Matic, J.; Poon, S.; Walker, M.J.; Wilson, M.R.; et al. Polyelectrolyte complex materials consisting of antibacterial and cell-supporting layers. Macromol. Biosci. 2012, 12, 374–382, doi:10.1002/mabi.201100317.
[23]  Zhang, X.; Yang, D.; Nie, J. Chitosan/polyethylene glycol diacrylate films as potential wound dressing material. Int. J. Biol. Macromol. 2008, 43, 456–462, doi:10.1016/j.ijbiomac.2008.08.010.
[24]  Baxter, S.; Zivanovic, S.; Weiss, J. Molecular weight and degree of acetylation of high-intensity ultrasonicated chitosan. Food Hydrocolloid. 2005, 19, 821–830, doi:10.1016/j.foodhyd.2004.11.002.
[25]  Kantouch, A.; Heheish, A.; Bendak, A. Ceiv initiated graft polymerization of methyl methacrylate on wool fibres. Eur. Polym. J. 1971, 7, 153–163, doi:10.1016/0014-3057(71)90127-3.
[26]  Sun, D.; Stylios, G.K. Fabric surface properties affected by low temperature plasma treatment. J. Mater. Process. Tech. 2006, 173, 172–177, doi:10.1016/j.jmatprotec.2005.11.022.
[27]  Cardamone, J.M.; Yao, J.; Nuńez, A. Controlling shrinkage in wool fabrics: effective hydrogen peroxide systems. Text. Res. J. 2004, 74, 887–898, doi:10.1177/004051750407401008.
[28]  Strnad, S.; ?auper, O.; Jazbec, A.; Stana-Kleinschek, K. Influence of chemical modification on sorption and mechanical properties of cotton fibers treated with chitosan. Text. Res. J. 2008, 78, 390–398, doi:10.1177/0040517507085395.
[29]  Lim, S.-H.; Hudson, S.H. Application of a fibre-reactive chitosan derivative to cotton fabric as a zero-salt dyeing auxiliary. Color. Technol. 2004, 120, 108–113, doi:10.1111/j.1478-4408.2004.tb00215.x.
[30]  Chung, Y.-S.; Lee, K.-K.; Kim, J.-W. Durable Press and Antimicrobial Finishing of Cotton Fabrics with a Citric Acid and Chitosan Treatment. Text. Res. J. 1998, 68, 772–775, doi:10.1177/004051759806801011.
[31]  Shu, X.Z.; Zhu, K.J.; Song, W. Novel pH-sensitive citrate cross-linked chitosan film for drug controlled release. Int. J. Pharm. 2001, 212, 19–28, doi:10.1016/S0378-5173(00)00582-2.
[32]  Verma, P.; Baldrian, P.; Nerud, F. Decolorization of structurally different synthetic dyes using cobalt(II)/ascorbic acid/hydrogen peroxide system. Chemosphere 2003, 50, 975–979, doi:10.1016/S0045-6535(02)00705-1.
[33]  Marshall, W.E.; Wartelle, L.H.; Boler, D.E.; Johns, M.M.; Toles, C.A. Enhanced metal adsorption by soybean hulls modified with citric acid. Bioresource Technol. 1999, 69, 263–268, doi:10.1016/S0960-8524(98)00185-0.
[34]  Liu, W.; Sun, S.; Cao, Z.; Zhang, X.; Yao, K.; Lu, W.W.; et al. An investigation on the physicochemical properties of chitosan/DNA polyelectrolyte complexes. Biomaterials 2005, 26, 2705–2711, doi:10.1016/j.biomaterials.2004.07.038.
[35]  Sworn, G.; Sanderson, G.R.; Gibson, W. Gellan gum fluid gels. Food Hydrocolloid. 1995, 9, 265–271, doi:10.1016/S0268-005X(09)80257-9.
[36]  Barron, V.; Torrent, J. Use of the Kubelka—Munk theory to study the influence of iron oxides on soil colour. J. Soil Sci. 1986, 37, 499–510, doi:10.1111/j.1365-2389.1986.tb00382.x.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133