The formation of polyelectrolyte complex (PEC) wool fibers formed by dipping chitosan or gellan gum-treated wool fibers into biopolymer solutions of opposite charge is reported. Treating wool fibers with chitosan (CH) and gellan gum (GG) solutions containing food dyes resulted in improved mechanical characteristics compared to wool fibers. In contrast, pH modification of the solutions resulted in the opposite effect. The mechanical characteristics of PEC-treated fibers were affected by the order of addition, i.e., dipping GG-treated fibers into chitosan resulted in mechanical reinforcement, whereas the reverse-order process did not.
References
[1]
Hoogeveen, N.G.; Cohen Stuart, M.A.; Fleer, G.J.; B?hmer, M.R. Formation and stability of multilayers of polyelectrolytes. Langmuir 1996, 12, 3675–3681, doi:10.1021/la951574y.
[2]
Woelki, S.; Kohler, H.-H. Effect of dispersion forces on the potential of charged interfaces. Chem. Phys. 2004, 306, 209–217, doi:10.1016/j.chemphys.2004.07.028.
[3]
Miller, M.D.; Bruening, M.L. Controlling the nanofiltration properties of multilayer polyelectrolyte membranes through variation of film composition. Langmuir 2004, 20, 11545–11551, doi:10.1021/la0479859.
[4]
Van Den Beucken, J.J.J.P.; Vos, M.R.J.; Thüne, P.C.; Hayakawa, T.; Fukushima, T.; Okahata, Y.; et al. Fabrication, characterization, and biological assessment of multilayered DNA-coatings for biomaterial purposes. Biomaterials 2006, 27, 691–701, doi:10.1016/j.biomaterials.2005.06.015.
[5]
Tang, Z.; Wang, Y.; Podsiadlo, P.; Kotov, N.A. Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering. Adv. Mater. 2006, 18, 3203–3224, doi:10.1002/adma.200600113.
[6]
Jiao, Y.-P.; Cui, F.-Z. Surface modification of polyester biomaterials for tissue engineering. Biomed. Mater. 2007, 2, doi:10.1088/1748-6041/2/4/R02.
[7]
K?hler, K.; Sukhorukov, G.B. Heat Treatment of polyelectrolyte multilayer capsules: a versatile method for encapsulation. Adv. Funct. Mater. 2007, 17, 2053–2061, doi:10.1002/adfm.200600593.
[8]
Bertrand, P.; Jonas, A.; Laschewsky, A.; Legras, R. Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromol. Rapid Comm. 2000, 21, 319–348, doi:10.1002/(SICI)1521-3927(20000401)21:7<319::AID-MARC319>3.0.CO;2-7.
[9]
Po?owiński, S. Deposition of polymer complex layers onto nonwoven textiles. J. Appl. Polym. Sci. 2007, 103, 1700–1705, doi:10.1002/app.25099.
[10]
Stefan, P. Nonwoven fabrics modified with deposited nanolayers. Polimery 2007, 52, 357–361.
[11]
Stefan, Po?owiński; Stawski, D. Thermogravimetric measurements of poly(propylene) nonwovens containing deposited layers of polyelectrolytes and colloidal particles of noble metals. Fibres Text. East. Eur. 2007, 15, 82–85.
[12]
Dubas, S.T.; Kumlangdudsana, P.; Potiyaraj, P. Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids and Surfaces A: Physicochem. Eng. Asp. 2006, 289, 105–109, doi:10.1016/j.colsurfa.2006.04.012.
[13]
Agullo, E.; Rodriguez, M.S.; Ramos, V.; Albertengo, L. Present and future role of chitin and chitosan in food. Macromol. Biosci. 2003, 3, 521–530, doi:10.1002/mabi.200300010.
Smith, A.M.; Shelton, R.M.; Perrie, Y.; Harris, J.J. An initial evaluation of gellan gum as a material for tissue engineering applications. J. Biomater. Appl. 2007, 22, 241–254, doi:10.1177/0885328207076522.
[16]
Amaike, M.; Senoo, Y.; Yamamoto, H. Sphere, honeycomb, regularly spaced droplet and fiber structures of polyion complexes of chitosan and gellan. Macromol. Rapid Comm. 1998, 19, 287–289, doi:10.1002/(SICI)1521-3927(19980601)19:6<287::AID-MARC287>3.0.CO;2-X.
[17]
Yamamoto, H.; Horita, C.; Senoo, Y.; Nishida, A.; Ohkawa, K. Polyion complex fiber and capsule formed by self-assembly of poly-L-Lysine and gellan at solution interfaces. J. Appl. Polym. Sci. 2001, 79, 437–446, doi:10.1002/1097-4628(20010118)79:3<437::AID-APP60>3.0.CO;2-Q.
[18]
Yamamoto, H.; Ohkawa, K.; Nakamura, E.; Miyamoto, K.; Komai, T. Preparation of polyion complex capsule and fiber of chitosan and gellan-sulfate at aqueous interface. Bull. Chem. Soc. Jpn. 2003, 76, 2053–2057, doi:10.1246/bcsj.76.2053.
[19]
Ohkawa, K.; Kitagawa, T.; Yamamoto, H. Preparation and characterization of chitosan-gellan hybrid capsules formed by self-assembly at an aqueous solution interface. Macromol. Mater Eng. 2004, 289, 33–40, doi:10.1002/mame.200300188.
[20]
Meier, C.; Welland, M.E. Wet-Spinning of amyloid protein nanofibers into multifunctional high-performance biofibers. Biomacromolecules 2011, 12, 3453–3459, doi:10.1021/bm2005752.
[21]
Amin, K.A.M.; Panhuis, Mih. Polyelectrolyte complex materials from chitosan and gellan gum. Carbohyd. Polym. 2011, 86, 352–358, doi:10.1016/j.carbpol.2011.04.035.
[22]
Mat Amin, K.A.; Gilmore, K.J.; Matic, J.; Poon, S.; Walker, M.J.; Wilson, M.R.; et al. Polyelectrolyte complex materials consisting of antibacterial and cell-supporting layers. Macromol. Biosci. 2012, 12, 374–382, doi:10.1002/mabi.201100317.
[23]
Zhang, X.; Yang, D.; Nie, J. Chitosan/polyethylene glycol diacrylate films as potential wound dressing material. Int. J. Biol. Macromol. 2008, 43, 456–462, doi:10.1016/j.ijbiomac.2008.08.010.
[24]
Baxter, S.; Zivanovic, S.; Weiss, J. Molecular weight and degree of acetylation of high-intensity ultrasonicated chitosan. Food Hydrocolloid. 2005, 19, 821–830, doi:10.1016/j.foodhyd.2004.11.002.
[25]
Kantouch, A.; Heheish, A.; Bendak, A. Ceiv initiated graft polymerization of methyl methacrylate on wool fibres. Eur. Polym. J. 1971, 7, 153–163, doi:10.1016/0014-3057(71)90127-3.
[26]
Sun, D.; Stylios, G.K. Fabric surface properties affected by low temperature plasma treatment. J. Mater. Process. Tech. 2006, 173, 172–177, doi:10.1016/j.jmatprotec.2005.11.022.
[27]
Cardamone, J.M.; Yao, J.; Nuńez, A. Controlling shrinkage in wool fabrics: effective hydrogen peroxide systems. Text. Res. J. 2004, 74, 887–898, doi:10.1177/004051750407401008.
[28]
Strnad, S.; ?auper, O.; Jazbec, A.; Stana-Kleinschek, K. Influence of chemical modification on sorption and mechanical properties of cotton fibers treated with chitosan. Text. Res. J. 2008, 78, 390–398, doi:10.1177/0040517507085395.
[29]
Lim, S.-H.; Hudson, S.H. Application of a fibre-reactive chitosan derivative to cotton fabric as a zero-salt dyeing auxiliary. Color. Technol. 2004, 120, 108–113, doi:10.1111/j.1478-4408.2004.tb00215.x.
[30]
Chung, Y.-S.; Lee, K.-K.; Kim, J.-W. Durable Press and Antimicrobial Finishing of Cotton Fabrics with a Citric Acid and Chitosan Treatment. Text. Res. J. 1998, 68, 772–775, doi:10.1177/004051759806801011.
[31]
Shu, X.Z.; Zhu, K.J.; Song, W. Novel pH-sensitive citrate cross-linked chitosan film for drug controlled release. Int. J. Pharm. 2001, 212, 19–28, doi:10.1016/S0378-5173(00)00582-2.
[32]
Verma, P.; Baldrian, P.; Nerud, F. Decolorization of structurally different synthetic dyes using cobalt(II)/ascorbic acid/hydrogen peroxide system. Chemosphere 2003, 50, 975–979, doi:10.1016/S0045-6535(02)00705-1.
[33]
Marshall, W.E.; Wartelle, L.H.; Boler, D.E.; Johns, M.M.; Toles, C.A. Enhanced metal adsorption by soybean hulls modified with citric acid. Bioresource Technol. 1999, 69, 263–268, doi:10.1016/S0960-8524(98)00185-0.
[34]
Liu, W.; Sun, S.; Cao, Z.; Zhang, X.; Yao, K.; Lu, W.W.; et al. An investigation on the physicochemical properties of chitosan/DNA polyelectrolyte complexes. Biomaterials 2005, 26, 2705–2711, doi:10.1016/j.biomaterials.2004.07.038.
Barron, V.; Torrent, J. Use of the Kubelka—Munk theory to study the influence of iron oxides on soil colour. J. Soil Sci. 1986, 37, 499–510, doi:10.1111/j.1365-2389.1986.tb00382.x.