This paper reports the results of a 2-year study of water quality in the River Enborne, a rural river in lowland England. Concentrations of nitrogen and phosphorus species and other chemical determinands were monitored both at high-frequency (hourly), using automated in situ instrumentation, and by manual weekly sampling and laboratory analysis. The catchment land use is largely agricultural, with a population density of 123 persons km ?2. The river water is largely derived from calcareous groundwater, and there are high nitrogen and phosphorus concentrations. Agricultural fertiliser is the dominant source of annual loads of both nitrogen and phosphorus. However, the data show that sewage effluent discharges have a disproportionate effect on the river nitrogen and phosphorus dynamics. At least 38% of the catchment population use septic tank systems, but the effects are hard to quantify as only 6% are officially registered, and the characteristics of the others are unknown. Only 4% of the phosphorus input and 9% of the nitrogen input is exported from the catchment by the river, highlighting the importance of catchment process understanding in predicting nutrient concentrations. High-frequency monitoring will be a key to developing this vital process understanding.
References
[1]
Office of National Statistics, National Population Projections: 2010-Based Statistical Bulletin.
[2]
Bronstert, A. Rainfall-runoff modelling for assessing impacts of climate and land-use change. Hydrol. Processes 2004, 18, 567–570, doi:10.1002/hyp.5500.
[3]
Johnson, A.C.; Acreman, M.C.; Dunbar, M.J.; Feist, S.W.; Giacomello, A.M.; Gozlan, R.E.; Hinsley, S.A.; Ibbotson, A.T.; Jarvie, H.P.; Jones, J.I.; et al. The British river of the future: How climate change and human activity might affect two contrasting river ecosystems in England. Sci. Total Environ. 2009, 407, 4787–4798, doi:10.1016/j.scitotenv.2009.05.018.
[4]
Limbrick, K.J.; Whitehead, P.G.; Butterfield, D.; Reynard, N. Assessing the potential impacts of various climate change scenarios on the hydrological regime of the River Kennet at Theale, Bberkshire, south-central England, UK: An application and evaluation of the new semi-distributed model, INCA. Sci. Total Environ. 2000, 251, 539–555.
[5]
Hulme, M.; Jenkins, G.J.; Lu, X.; Turnpenny, J.R.; Mitchell, T.D.; Jones, R.G.; Lowe, J.; Murphy, J.M.; Hassell, D.; Boorman, P.; et al. Climate Change Scenarios for the United Kingdom: The UKCIP02 Scientific Report; Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia: Norwich, UK, 2002; p. 120.
[6]
Brown, R.; Acheson, R. The Climate is Changing—Time to Get Ready; Environment Agency: Bristol, UK, 2005; p. 32.
[7]
Environment Agency. Water for People and the Environment—Water Resources Strategy: Regional Strategy Actions for South East Region; Environment Agency: Reading, UK, 2012; p. 32. Available online: http://www.environment-agency.gov.UK/static/documents/Research/120327_WRStrategy_Regional_strategy_actions_FINAL.pdf (accessed on 28 October 2013).
[8]
Marsh, T. The 2004–2006 drought in southern Britain. Weather 2007, 62, 191–196, doi:10.1002/wea.99.
[9]
Marsh, T.; Cole, G.; Wilby, R. Major droughts in England and Wales, 1800–2006. Weather 2007, 62, 87–93, doi:10.1002/wea.67.
[10]
BBC, Cumbrian Floods 2009. BBC News Cumbria, 7 December 2009. Available online: http://news.bbc.co.UK/local/cumbria/hi/people_and_places/newsid_8378000/8378388.stm (accessed on 28 October 2013).
[11]
Hannaford, J. UK Flooding—Briefing from the Centre for Ecology & Hydrology—20 November 2009. Available online: http://www.ceh.ac.UK/news/news_archive/2009_news_item_48.html (accessed on 28 October 2013).
[12]
Withers, P.J.A.; Haygarth, P.M. Agriculture, phosphorus and eutrophication: A European perspective. Soil Use Manag. 2007, 23, 1–4, doi:10.1111/j.1475-2743.2007.00116.x.
[13]
Haygarth, P.M.; Condron, L.M.; Heathwaite, A.L.; Turner, B.L.; Harris, G.P. The phosphorus transfer continuum: Linking source to impact with an interdisciplinary and multi-scaled approach. Sci. Total Environ. 2005, 344, 5–14, doi:10.1016/j.scitotenv.2005.02.001.
[14]
Durand, P.; Breuer, L.; Johnes, P.J. Nitrogen Processes in Aquatic Ecosystems. In European Nitrogen Assessmen; Sutton, M.A., Howard, C.M., Erisman, J.W., Billen, G., Bleeker, A., Grennfelt, P., van Grinsven, H., Grizzetti, B., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 126–146.
[15]
Beven, K. Towards integrated environmental models of everywhere: Uncertainty, data and modelling as a learning process. Hydrol. Earth Syst. Sci. 2007, 11, 460–467, doi:10.5194/hess-11-460-2007.
[16]
Wilby, R.L.; Whitehead, P.G.; Wade, A.J.; Butterfield, D.; Davis, R.J.; Watts, G. Integrated modelling of climate change impacts on water resources and quality in a lowland catchment: River Kennet, UK. J. Hydrol. 2006, 330, 204–220, doi:10.1016/j.jhydrol.2006.04.033.
[17]
Naddeo, V.; Zarra, T.; Belgiorno, V. Optimization of sampling frequency for river water quality assessment according to italian implementation of the EU Water Framework Directive. Environ. Sci. Policy 2007, 10, 243–249, doi:10.1016/j.envsci.2006.12.003.
[18]
Environment Agency (EA). Water Resources in England and Wales—Current State and Future Pressures; EA: Bristol, UK, 2008; p. 22.
[19]
Environment Agency (EA). Creating a Better Place 2010–2015: Our Corporate Strategy.
[20]
Burns, J. UK Rivers Failing New EU Standard. BBC News, 23 November 2009. Available online: http://news.bbc.co.UK/1/mobile/sci/tech/8267686.stm (accessed on 28 October 2013).
[21]
Neal, C.; Jarvie, H.P.; Wade, A.J.; Whitehead, P.G. Water quality functioning of lowland permeable catchments: Inferences from an intensive study of the River Kennet and upper River Thames. Sci. Total Environ. 2002, 282, 471–490.
[22]
Lischeid, G.; Bittersohl, J. Tracing biogeochemical processes in stream water and groundwater using non-linear statistics. J. Hydrol. 2008, 357, 11–28, doi:10.1016/j.jhydrol.2008.03.013.
[23]
Jordan, P.; Arnscheidt, J.; McGrogan, H.; McCormick, S. High-resolution phosphorus transfers at the catchment scale: The hidden importance of non-storm transfers. Hydrol. Earth Syst. Sci. 2005, 9, 685–691, doi:10.5194/hess-9-685-2005.
[24]
Palmer-Felgate, E.J.; Jarvie, H.P.; Williams, R.J.; Mortimer, R.J.G.; Loewenthal, M.; Neal, C. Phosphorus dynamics and productivity in a sewage-impacted lowland chalk stream. J. Hydrol. 2008, 351, 87–97.
[25]
Jarvie, H.P.; Sharpley, A.N.; Withers, P.J.A.; Scott, J.T.; Haggard, B.E.; Neal, C. Phosphorus mitigation to control river eutrophication: Murky waters, inconvenient truths, and “postnormal” science. J. Environ. Qual. 2013, 42, 295–304, doi:10.2134/jeq2012.0085.
[26]
Jarvie, H.P.; Neal, C.; Withers, P.J.A. Sewage-effluent phosphorus: A greater risk to river eutrophication than agricultural phosphorus? Sci. Total Environ. 2006, 360, 246–253, doi:10.1016/j.scitotenv.2005.08.038.
[27]
Bowes, M.J.; Smith, J.T.; Jarvie, H.P.; Neal, C. Modelling of phosphorus inputs to rivers from diffuse and point sources. Sci. Total Environ. 2008, 395, 125–138, doi:10.1016/j.scitotenv.2008.01.054.
[28]
Neal, C.; Martin, E.; Neal, M.; Hallett, J.; Wickham, H.D.; Harman, S.A.; Armstrong, L.K.; Bowes, M.J.; Wade, A.J.; Keay, D. Sewage effluent clean-up reduces phosphorus but not phytoplankton in lowland chalk stream (River Kennet, UK) impacted by water mixing from adjacent canal. Sci. Total Environ. 2010, 408, 5306–5316, doi:10.1016/j.scitotenv.2010.08.010.
[29]
Bowes, M.J.; Smith, J.T.; Neal, C. The value of high-resolution nutrient monitoring: A case study of the River Frome, Dorset, UK. J. Hydrol. 2009, 378, 82–96, doi:10.1016/j.jhydrol.2009.09.015.
[30]
Jarvie, H.P.; Sharpley, A.N.; Scott, J.T.; Haggard, B.E.; Bowes, M.J.; Massey, L.B. Within-river phosphorus retention: Accounting for a missing piece in the watershed phosphorus puzzle. Environ. Sci. Technol. 2012, 46, 13284–13292, doi:10.1021/es303562y.
[31]
Bowes, M.J.; Leach, D.V.; House, W.A. Seasonal nutrient dynamics in a chalk stream: The River Frome, Dorset, Uk. Sci. Total Environ. 2005, 336, 225–241, doi:10.1016/j.scitotenv.2004.05.026.
Macintosh, K.A.; Jordan, P.; Cassidy, R.; Arnscheidt, J.; Ward, C. Low flow water quality in rivers; septic tank systems and high-resolution phosphorus signals. Sci. Total Environ. 2011, 412, 58–65.
[34]
Withers, P.J.A.; Jarvie, H.P.; Stoate, C. Quantifying the impact of septic tank systems on eutrophication risk in rural headwaters. Environ. Int. 2011, 37, 644–653, doi:10.1016/j.envint.2011.01.002.
[35]
May, L.; Place, C.; O’Malley, M.; Spears, B. The Impact of Phosphorus Inputs from Small Discharges on Designated Freshwater Sites. CEH Project Number: C03655; NERC—Centre for Ecology and Hydrology, Natural England and Broads Authority: Edinburgh, UK, 2011; p. 130.
[36]
Neal, C.; Jarvie, H.P.; Withers, P.J.A.; Whitton, B.A.; Neal, M. The strategic significance of wastewater sources to pollutant phosphorus levels in english rivers and to environmental management for rural, agricultural and urban catchments. Sci. Total Environ. 2010, 408, 1485–1500, doi:10.1016/j.scitotenv.2009.12.020.
[37]
LIMPIDS. Linking Improved Modelling of Pollution to Innovative Development of Sensors. Available online: http://www2.hull.ac.uk/science/envmon/limpids.aspx (accessed on 28 October 2013).
[38]
Wade, A.J.; Palmer-Felgate, E.J.; Halliday, S.J.; Skeffington, R.A.; Loewenthal, M.; Jarvie, H.P.; Bowes, M.J.; Greenway, G.M.; Haswell, S.J.; Bell, I.M.; et al. Hydrochemical processes in lowland rivers: Insights from in situ, high-resolution monitoring. Hydrol. Earth Syst. Sci. 2012, 16, 4323–4342, doi:10.5194/hess-16-4323-2012.
[39]
Yellow Springs Instruments (YSI). Environmental Monitoring Systems Operations Manual: 6–Series Multi-Parameter Water Quality Sondes User Manual. Available online: http://www.ysi.com/index.php (accessed on 28 October 2013).
[40]
Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36, doi:10.1016/S0003-2670(00)88444-5.
[41]
Systea. On Line Analyser for Potable Surface Water and Waste Water Monitoring. Available online: http://www.systea.it/ (accessed on 28 October 2013).
[42]
Hach-Lange. Nitratax—User Manual; Hach Lange Ltd.: Manchester, UK, 2007; Volume DOC023.54.03211. Available online: http://www.hach.com/asset-get.download-en.jsa?id=7639982966 (accessed on 28 October 2013).
[43]
Bowes, M.J.; Gozzard, E.; Johnson, A.C.; Scarlett, P.M.; Roberts, C.; Read, D.S.; Armstrong, L.K.; Harman, S.; Wickham, H. Spatial and temporal changes in chlorophyll-a concentrations in the River Thames basin, UK: Are phosphorus concentrations beginning to limit phytoplankton biomass? Sci. Total Environ. 2012, 426, 45–55, doi:10.1016/j.scitotenv.2012.02.056.
[44]
Neal, C.; Skeffington, R.; Neal, M.; Wyatt, R.; Wickham, H.; Hill, L.; Hewitt, N. Rainfall and runoff water quality of the Pang and Lambourn, tributaries of the River Thames, south-eastern England. Hydrol. Earth Syst. Sci. 2004, 8, 601–613, doi:10.5194/hess-8-601-2004.
[45]
Neal, C.; Bowes, M.; Jarvie, H.P.; Scholefield, P.; Leeks, G.; Neal, M.; Rowland, P.; Wickham, H.; Harman, S.; Armstrong, L.; et al. Lowland river water quality: A new UK data resource for process and environmental management analysis. Hydrol. Processes 2012, 26, 949–960, doi:10.1002/hyp.8344.
[46]
Office of National Statistics, Neighborhood Statistics—2011 Census Data.
[47]
EDiNA & DEFRA. Edina Agcensus Database. EDiNA at Edinburgh University Data Library and DEFRA. Available online: http://edina.ac.uk/agcensus/ (accessed on 28 October 2013).
[48]
Morton, D.; Rowland, C.; Wood, C.; Meek, L.; Marston, C.; Smith, G.; Wadsworth, R.; Simpson, I.C. Final Report for LCM2007—The New UK Land Cover Map. CEH Project Number: C03259; Countryside Survey Technical Report No.11/07; NERC/Centre for Ecology & Hydrology: Lancaster, UK, 2011; p. 112.
[49]
DEFRA. British Survey of Fertiliser Practice.
[50]
DEFRA. UK Atmospheric Deposition Data.
[51]
Neal, C.; Jarvie, H.P.; Wade, A.J.; Neal, M.; Wyatt, R.; Wickham, H.; Hill, L.; Hewitt, N. The water quality of the locar pang and lambourn catchments. Hydrol. Earth Syst. Sci. 2004, 8, 614–635, doi:10.5194/hess-8-614-2004.
[52]
UK Meteorological Office. Met Office Integrated Data Archive System (Midas) Land and Marine Surface Stations Data (1853-Current); NCAS British Atmospheric Data Centre: Didcot, UK, 2013.
[53]
Thames Water. Sewage Treatment Work Data for Works within the Thames Water Region. 2013.
[54]
DEFRA. Sewage Treatment in the UK: UK Implementation of the EC Urban Waste Water Treatment Directive.
[55]
Walling, D.E.; Webb, B.W. Estimating the discharge of contaminants to coastal waters by rivers: Some cautionary comments. Mar. Pollut. Bull. 1985, 16, 488–492, doi:10.1016/0025-326X(85)90382-0.
[56]
Littlewood, I.G.; Marsh, T.J. Annual freshwater river mass loads from Great Britain, 1975–1994: Estimation algorithm, database and monitoring network issues. J. Hydrol. 2005, 304, 221–237, doi:10.1016/j.jhydrol.2004.07.031.
[57]
Johnes, P.J. Uncertainties in annual riverine phosphorus load estimation: Impact of load estimation methodology, sampling frequency, baseflow index and catchment population density. J. Hydrol. 2007, 332, 241–258, doi:10.1016/j.jhydrol.2006.07.006.
[58]
Jolliff, J.K.; Kindle, J.C.; Shulman, I.; Penta, B.; Friedrichs, M.A.M.; Helber, R.; Arnone, R.A. Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment. J. Mar. Syst. 2009, 76, 64–82.
[59]
Marsh, T.J.; Hannaford, J. UK Hydrometric Register—Hydrological Data UK Series; Centre for Ecology & Hydrology: Wallingford, UK, 2008; p. 210.
[60]
Hampshire Biodiversity Partnership. Water and Biodiversity—Topic Action Plan—July. Available online: http://www.hampshirebiodiversity.org.uk/pdf/PublishedPlans/Water_BAP.pdf (accessed on 28 October 2013).
[61]
Natural England. Site of Special Scientific Interest Database. Available online: http://www.sssi.naturalEngland.org.UK/Special/sssi/search.cfm (accessed on 28 October 2013).
[62]
Evans, D.J.; Johnes, P. Physico-chemical controls on phosphorus cycling in two lowland streams. Part 1—The water column. Sci. Total Environ. 2004, 329, 145–163, doi:10.1016/j.scitotenv.2004.02.018.
[63]
Evans, D.J.; Johnes, P.J.; Lawrence, D.S. Physico-chemical controls on phosphorus cycling in two lowland streams. Part 2—The sediment phase. Sci. Total Environ. 2004, 329, 165–182, doi:10.1016/j.scitotenv.2004.02.023.
[64]
Environment Agency. The Kennet and Pang Catchment Abstraction Management Strategy—2004. Available online: http://a0768b4a8a31e106d8b0-50dc802554eb38a24458b98ff72d550b.r19.cf3.rackcdn.com/geth0404bhxh-e-e.pdf (accessed on 28 October 2013).
[65]
Environment Agency. Database of Consented Discharges to Controlled Waters with Conditions—England and Wales. Available online: http://www.geostore.com/environment-agency/WebStore?xml=environment-agency/xml/dataLayers_CDCWC.xml (accessed on 28 October 2013).
[66]
UK Technical Advisory Group WFD. UK Environmental Standards and Conditions Report (Phase 1)—Final Report—2008. Available online: http://www.wfdUK.org/resources%20/UK-environmental-standards-and-conditions-report-phase-1 (accessed on 28 October 2013).
[67]
Whitehead, P.G.; Crossman, J.; Balana, B.B.; Futter, M.N.; Comber, S.; Jin, L.; Skuras, D.; Wade, A.J.; Bowes, M.J.; Read, D.S. A cost-effectiveness analysis of water security and water quality: Impacts of climate and land-use change on the River Thames system. Philos. Trans. R. Soc. A 2013, 371, doi:10.1098/rsta.2012.0413.
[68]
Jackson, B.M.; Wheater, H.S.; Mathias, S.A.; McIntyre, N.; Butler, A.P. A simple model of variable residence time flow and nutrient transport in the chalk. J. Hydrol. 2006, 330, 221–234, doi:10.1016/j.jhydrol.2006.04.045.
[69]
Food and Agriculture Organization (FAO) of the United Nations. Wastewater Treatment and Use in Agriculture; FAO: Rome, Italy, 1992; p. 125. Available online: http://www.fao.org/docrep/t0551e/t0551e00.HTM (accessed on 28 October 2013).
[70]
Withers, P.J.A.; Jarvie, H.P. Delivery and cycling of phosphorus in rivers: A review. Sci. Total Environ. 2008, 400, 379–395, doi:10.1016/j.scitotenv.2008.08.002.
[71]
Loperfido, J.V.; Just, C.L.; Papanicolaou, A.N.; Schnoor, J.L. In situ sensing to understand diel turbidity cycles, suspended solids, and nutrient transport in Clear Creek, Iowa. Water Resour. Res. 2010, 46, doi:10.1029/2009WR008293.
[72]
Nimick, D.A.; Gammons, C.H.; Parker, S.R. Diel biogeochemical processes and their effect on the aqueous chemistry of streams: A review. Chem. Geol. 2011, 283, 3–17, doi:10.1016/j.chemgeo.2010.08.017.
[73]
Halliday, S.J.; Skeffington, R.A.; Wade, A.J.; Neal, C.; Reynolds, B.; Norris, D.; Kirchner, J.W. Upland streamwater nitrate dynamics across decadal to sub-daily timescales: A case study of Plynlimon, Wales. Biogeosci. Discuss. 2013, 10, 13129–13189, doi:10.5194/bgd-10-13129-2013.
[74]
Jarvie, H.P.; Withers, P.J.A.; Bowes, M.J.; Palmer-Felgate, E.J.; Harper, D.M.; Wasiak, K.; Wasiak, P.; Hodgkinson, R.A.; Bates, A.; Stoate, C.; et al. Streamwater phosphorus and nitrogen across a gradient in rural–agricultural land use intensity. Agric. Ecosyst. Environ. 2010, 135, 238–252, doi:10.1016/j.agee.2009.10.002.
[75]
Lundquist, J.D.; Cayan, D.R. Seasonal and spatial patterns in diurnal cycles in streamflow in the western United States. J. Hydrometeorol. 2002, 3, 591–603, doi:10.1175/1525-7541(2002)003<0591:SASPID>2.0.CO;2.
[76]
Palmer-Felgate, E.J.; Mortimer, R.J.G.; Krom, M.D.; Jarvie, H.P. Impact of point-source pollution on phosphorus and nitrogen cycling in stream-bed sediments. Environ. Sci. Technol. 2010, 44, 908–914, doi:10.1021/es902706r.
[77]
Wade, A.J.; Hornberger, G.M.; Whitehead, P.G.; Jarvie, H.P.; Flynn, N. On modeling the mechanisms that control in-stream phosphorus, macrophyte, and epiphyte dynamics: An assessment of a new model using general sensitivity analysis. Water Resour. Res. 2001, 37, 2777–2792, doi:10.1029/2000WR000115.