全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Water  2014 

Performance of an Anaerobic Baffled Filter Reactor in the Treatment of Algae-Laden Water and the Contribution of Granular Sludge

DOI: 10.3390/w6010122

Keywords: anaerobic baffled reactor (ABR), algae-laden water, soft filler, partial phase separation

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study investigated the performance and stability of an anaerobic baffled filter reactor in the treatment of algae-laden water from Taihu Lake at several organic loading rates. The study also evaluated the capability of soft filler to train granule sludge and improve the anaerobic environment and sludge activity in the anaerobic baffled reactor (ABR), thereby enhancing the treatment efficiency. The ABR consisted of five rectangular compartments, each of which was 120 cm long, 80 cm wide, 80 cm high, and packed with soft filler. The anaerobic baffled filter reactor was found to be an efficient reactor configuration for the treatment of algae-laden water. The reactor was operated at an organic loading rate of 1.5 kg chemical oxygen demand (COD)/(m 3d) and an ambient temperature of 30 °C; under these conditions, the COD removal efficiency was 80% and the biogas production rate was 293 mL/(Ld). Moreover, the soft filler increased the biomass retention time and decreased the rate at which solids were washed out from the reactor, promoting an improved spatial distribution of the microbial communities within the compartments. Methanoregula, Methanobacteriaceae, Methanosaeta, Methanoculleu, and Thermogymnomonas were the dominant archaeal species in each compartment during an operational period of approximately 100 days. The protease activity in the reactor decreased longitudinally down the reactor from Compartments 1 to 5, whereas the activity of coenzyme F 420 increased. The soft filler played a key role in successfully treating algae-laden water with the anaerobic baffled filter reactor.

References

[1]  Eleuterio, L.; Batist, J.R. Biodegradation studies and sequencing of microcystin-LR degrading bacteria isolated from a drinking water biofilter and a fresh water lake. Toxicon 2010, 55, 1434–1442, doi:10.1016/j.toxicon.2010.02.020.
[2]  Guo, L. Doing battle with the green monster of Taihu lake. Science 2007, 317, doi:10.1126/science.317.5842.1166.
[3]  Yan, Q.; Zhao, M.; Miao, H.; Ruan, W.; Song, R. Coupling of the hydrogen and polyhydroxyalkano-ates (PHA) production through anaerobic digestion from Taihu blue algae. Bioresour. Technol. 2010, 101, 4508–4512, doi:10.1016/j.biortech.2010.01.073.
[4]  Cai, Y.; Kong, F.; Shi, L.; Yu, Y. Spatial heterogeneity of cyanobacterial communities and genetic variation of Microcystis populations within large, shallow eutrophic lakes (Lake Taihu and Lake Chaohu, China). J. Environ. Sci. 2012, 24, 1832–1842, doi:10.1016/S1001-0742(11)61007-3.
[5]  Liu, Y.; Chen, W.; Li, D.; Huang, Z.; Shen, Y.; Liu, Y. Cyanobacteria-cyanotoxin-contaminations and eutrophication status before Wuxi Drinking Water Crisis in Lake Taihu, China. J. Environ. Sci. 2011, 23, 575–581, doi:10.1016/S1001-0742(10)60450-0.
[6]  Wu, B.; Zhao, D.; Zhang, Y.; Zhang, X.; Cheng, S. Multivariate statistical study of organic pollutants in Nanjing reach of Yangtze River. J. Hazard. Mater. 2009, 169, 1093–1098, doi:10.1016/j.jhazmat.2009.04.065.
[7]  Kuscu, O.S.; Sponza, D.T. Performance of anaerobic baffled reactor (ABR) treating synthetic wastewater containing p-nitrophenol. Enzym. Microb. Technol. 2005, 36, 888–895, doi:10.1016/j.enzmictec.2005.01.001.
[8]  Uyanik, S.; Sallis, P.J.; Anderson, G.K. The effect of polymer addition on granulation in an anaerobic baffled reactor (ABR). Part 1: Process performance. Water Res. 2002, 36, 933–943, doi:10.1016/S0043-1354(01)00315-3.
[9]  Ji, R.P.; Lu, X.W.; Li, X.N.; Pu, Y.P. Biological degradation of algae and microcystins by microbial enrichment on artrificial media. Ecol. Eng. 2009, 35, 1584–1588, doi:10.1016/j.ecoleng.2008.12.031.
[10]  Bachmann, A.; Beard, V.L.; McCarty, P.L. Performance characteristics of the anaerobic baffled reactor. Water Res. 1985, 19, 99–106, doi:10.1016/0043-1354(85)90330-6.
[11]  State Environmental Protection Administration of China. National Standard Methods for Water and Wastewater Quality Analysis, 4th ed.; China Environmental Science Press: Beijing, China, 2004; pp. 102–226.
[12]  Liu, R.; Lu, X.; Tian, Q.; Yang, B.; Chen, J. The performance evaluation of hybrid anaerobic baffled reactor for treatment of PVA-containing desizing wastewater. Desalination 2011, 271, 287–294, doi:10.1016/j.desal.2010.12.044.
[13]  Zhu, G.-F.; Li, J.-Z.; Wu, P.; Jin, H.-Z.; Wang, Z. The performance and phase separated characteristics of an anaerobic baffled reactor treating soybean protein processing wastewater. Bioresour. Technol. 2008, 99, 8027–8033, doi:10.1016/j.biortech.2008.03.046.
[14]  Whiteley, C.G.; Heron, P. The enzymology of sludge solubilisation utilizing sulphate reducing systems properties of proteases and phosphatases. Enzym. Microb. Technol. 2001, 31, 419–424, doi:10.1016/S0141-0229(02)00100-X.
[15]  Whitmore, T.N.; Etheridge, S.P.; Stafford, D.A.; Leroff, U.E.A.; Hughes, D. The evaluation of anaerobic digester performance by coenzyme F420 analysis. Biomass 1986, 9, 29–35, doi:10.1016/0144-4565(86)90010-7.
[16]  Arooj, M.F.; Han, S.-K.; Kim, S.-H.; Kim, D.-H.; Shin, H.-S. Sludge characteristics in anaerobic SBR system producing hydrogen gas. Water Res. 2007, 41, 1177–1184, doi:10.1016/j.watres.2006.11.052.
[17]  Mohan, S.V.; Raghavulu, S.V.; Goud, R.K.; Srikanth, S.; Babu, V.L.; Sarma, P.N. Microbial diversity analysis of long term operated biofilm configured anaerobic reactor producing biohydrogen from wastewater under diverse conditions. Int. J. Hydrog. Energy 2010, 35, 12208–12215, doi:10.1016/j.ijhydene.2010.08.008.
[18]  Yu, Y.; Lü, X.; Li, J. Start-up of improved external circulation anaerobic reactor treating cyanobacteria and microbial properties of granular sludge. CIESC J. 2013, 64, 4203–4219.
[19]  Du, J.; Yan, S.-H.; Chang, Z.-Z. Potential of methane production of blue algae and its feasibility of fermentation with anaerobic baffled reactor. Jiangsu Agric. Sci. 2008, 24, 948–953.
[20]  Yu, Y.; Lü, X.; Wu, Y.; Xu, W.; Zhao, J.-W. Research on combined process of biological contact oxidation and aquatic vegetable wetland for algae anaerobically digested effluent treatment. J. Cent. South Univ. Nat. Sci. 2013, 40, 87–92.
[21]  Uyanik, S.; Sallis, P.J.; Anderson, G.K. The effect of polymer addition on granulation in an anaerobic baffled reactor (ABR). Part II: Compartmentalization of bacterial papulations. Water Res. 2002, 36, 944–955, doi:10.1016/S0043-1354(01)00316-5.
[22]  Holst, T.; Jorgensen, N.O.; Jorgensen, C.; Johansen, A. Degradation of microcystin in sediments at oxic and anoxic, denitrifying conditions. Water Res. 2003, 37, 4748–4760, doi:10.1016/S0043-1354(03)00413-5.
[23]  Falconer, I.R.; Humpage, A.R. Health risk assessment of cyanobacterial (blue-green algal) toxins in drinking water. Int. J. Environ. Res. Publ. Health 2005, 2, 43–50, doi:10.3390/ijerph2005010043.
[24]  Nasri, H.; El Herry, S.; Bouaicha, N. First reported case of turtle deaths during a toxic Microcystis spp. bloom in Lake Oubeira, Algeria. Ecotoxicol. Environ. Safe 2008, 71, 535–544, doi:10.1016/j.ecoenv.2007.12.009.
[25]  Mensah, K.A.; Forster, C.F. An examination of the effects of detergents on anaerobic digestion. Bioresour. Technol. 2003, 90, 133–138, doi:10.1016/S0960-8524(03)00126-3.
[26]  Ren, N.Q.; Zhao, D.; Chen, X.L.; Li, J.Z. Mechanism and controlling strategy of the production and accumulation of propionic acid for anaerobic wastewater treatment. Sci. China B 2002, 45, 319–327, doi:10.1360/02yb9041.
[27]  Speece, R.E. Anaerobic Biotechnology for Industrial Wastewater; Archae Press: Nashville, TN, USA, 1996; pp. 45–49.
[28]  Dolfing, J.; Bloeman, W.G.B.M. Activity measurements as a tool to characterize the microbial composition of methanogenic environments. J. Microbiol. Methods 1985, 4, 1–12.
[29]  Barber, W.P.; Stuckey, D.C. The use of the anaerobic baffled reactor (ABR) for wastewater treatment: A review. Water Res. 1999, 33, 1559–1578, doi:10.1016/S0043-1354(98)00371-6.
[30]  Angenent, L.T.; Abel, S.J.; Sung, S. Effect of an organic shock load on the stability of an anaerobic migrating blanket reactor. J. Environ. Eng. 2002, 128, 1109–1120, doi:10.1061/(ASCE)0733-9372(2002)128:12(1109).
[31]  Lee, C.; Kim, J.; Shin, S.G.; Hwang, S. Monitoring bacterial and archaeal community shifts in a mesophilic anaerobic batch reactor treating a high-strength organic wastewater. FEMS Microbiol. Ecol. 2008, 65, 544–554, doi:10.1111/j.1574-6941.2008.00530.x.
[32]  Diaz, E.E.; Stams, A.J.A.; Amils, R.; Sanz, J.L. Phenotypic properties and microbial diversity of methanogenic granules from a full-scale upflow anaerobic sludge bed reactor treating brewery wastewater. Appl. Environ. Microbiol. 2006, 72, 4942–4949, doi:10.1128/AEM.02985-05.
[33]  Bialek, K.; Kim, J.; Lee, C.; Collins, G.; Mahony, T.; O’Flaherty, V. Quantitative and qualitative analyses of methanogenic community development in high-rate anaerobic bioreactors. Water Res. 2011, 45, 1298–1308, doi:10.1016/j.watres.2010.10.010.
[34]  Liu, X.; Ren, N.; Yuan, Y. Performance of a periodic anaerobic baffled reactor fed on Chinese traditional medicine industrial wastewater. Bioresour. Technol. 2009, 100, 104–110, doi:10.1016/j.biortech.2008.06.007.
[35]  Collins, G.; Woods, A.; McHugh, S.; Carton, M.W.; OFlaherty, V. Microbial community structure and methanogenic activity during start-up of psychrophilic anaerobic digesters treating synthetic industrial wastewaters. FEMS Microbiol. Ecol. 2003, 46, 159–170, doi:10.1016/S0168-6496(03)00217-4.
[36]  Watanabe, R.; Tada, C.; Baba, Y.; Fukuda, Y.; Nakai, Y. Enhancing methane production during the anaerobic digestion of crude glycerol using Japanese cedar charcoal. Bioresour. Technol. 2013, 150, 387–392, doi:10.1016/j.biortech.2013.10.030.
[37]  Zhang, J.; Wei, Y.; Xiao, W.; Zhou, Z.; Yan, X. Performance and spatial community succession of an anaerobic baffled reactor treating acetone-butanol-ethanol fermentation wastewater. Bioresour. Technol. 2011, 102, 7407–7414.
[38]  Nachaiyasit, S.; Stuckey, D.C. The effect of shock loads on the performance of an anaerobic baffled reactor (ABR). 2. Step and transient hydraulic shocks at constant feed strength. Water Res. 1997, 31, 2747–2754, doi:10.1016/S0043-1354(97)00134-6.
[39]  Aoki, K.; Miyamoto, K.; Murakami, S. Anaerobic synthesis of extracellular proteases by the soil bacterium bacillus sp.AM-23: Purification and characterization of the enzymes. Soil Biol. Biochem. 1995, 27, 1377–1382, doi:10.1016/0038-0717(95)00094-U.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133