全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Water  2014 

Leopold’s Arboretum Needs Upstream Water Treatment to Restore Wetlands Downstream

DOI: 10.3390/w6010104

Keywords: biodiversity conservation, Curtis Prairie, invasive species, stormwater management, sustainable management, urban runoff, water quality

Full-Text   Cite this paper   Add to My Lib

Abstract:

A case study has broad relevance for urban natural reserves. Aldo Leopold’s far-reaching vision to restore historical ecosystems at the UW-Madison Arboretum has been difficult to achieve despite ~80 years of restoration work. Wetlands (~1/4 of the 485-ha reserve) resist restoration, given urban watersheds and inflows of low quality water. Current conditions favor aggressive invasive plants (cattails, reed canary grass, and buckthorn)—species that do not fulfill the 1934 vision. Today, urban runoff flows into remnant natural wetlands, degraded wetlands, the iconic Curtis Prairie, and constructed wetlands. Regulations for total maximum daily loads (TMDLs) have led local municipalities to expand pre-existing sediment- and nutrient-trapping ponds from 5.67 ha (14 ac) of Arboretum land to 9.3 ha (23 ac) to protect downstream lakes. Both the runoff and the treatment facilities (with invasive plants) limit the Arboretum’s ability to achieve pre-settlement vegetation. Consistent with Leopold’s vision, we endorse Arboretum principles that urban runoff be restored to pre-settlement quality, and we recommend shifting efforts to reduce TMDLs to upstream lands in order to protect the Arboretum. Given that invasive species will persist, Leopold’s Arboretum should be rededicated to research, education, and restoration, plus sustainable management of its waters and wetlands.

References

[1]  Caldicott, J.B. ‘The Arboretum and The University’: The speech and the essay. Trans. Wis. Acad. Sci. Arts Letters 1999, 87, 5–21.
[2]  Zedler, J.B.; Doherty, J.M.; Miller, N.A. Shifting restoration policy to address landscape change, novel ecosystems, and monitoring. Ecol. Soc. 2012, 17, doi:10.5751/ES-05197-170436.
[3]  Curtis, J.T.; Partch, M.C. Effect of fire on the competition between bluegrass and certain prairie plants. Am. Midl. Nat. 1948, 39, 437–443, doi:10.2307/2421594.
[4]  Rohlich, G.A. Eutrophication: Causes, Consequences, Correctives; Academy of Sciences: Washington, DC, USA, 1969.
[5]  University of Wisconsin Arboretum. Facility Storm Water Management Plan; University of Wisconsin Arboretum: Madison, WI, USA, 2006.
[6]  Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568, doi:10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2.
[7]  Carpenter, S.R. Phosphorus control is critical to mitigating eutrophication. Proc. Natl. Acad. Sci. USA 2008, 105, 11039–11040, doi:10.1073/pnas.0806112105.
[8]  Lathrop, R.C. Perspectives on the eutrophication of the Yahara Lakes. Lake Reserv. Manag. 2007, 23, 345–365, doi:10.1080/07438140709354023.
[9]  Lewis, W.M., Jr.; Wurtsbaugh, W.A. Control of lacustrine phytoplankton by nutrients: Erosion of the phosphorus paradigm. Int. Rev. Hydrobiol. 2008, 93, 446–465, doi:10.1002/iroh.200811065.
[10]  Paerl, H.W.; Xu, H.; McCarthy, M.J.; Zhu, G.; Qin, B.; Li, Y.; Gardner, W.S. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy. Water Res. 2011, 45, 1973–1983, doi:10.1016/j.watres.2010.09.018.
[11]  Bernhardt, E.S. Cleaner lakes are dirtier lakes. Science 2013, 342, 205–206, doi:10.1126/science.1245279.
[12]  Finlay, J.C.; Small, G.E.; Sterner, R.W. Human influences on nitrogen removal in lakes. Science 2013, 342, 247–250, doi:10.1126/science.1242575.
[13]  Collins, K.A.; Lawrence, T.J.; Stander, E.K.; Jontos, R.J.; Kaushal, S.S.; Newcomer, T.A.; Grimm, N.B.; Ekberg, M.L.C. Opportunities and challenges for managing nitrogen in urban stormwater: A review and synthesis. Ecol. Eng. 2010, 36, 1507–1519, doi:10.1016/j.ecoleng.2010.03.015.
[14]  Leopold, A. Sand County Almanac; Oxford University Press: Oxford, UK, 1949.
[15]  Lathrop, R.D.; Liebl, D.; Welke, K. Carp removal to increase water clarity in shallow eutrophic Lake Wingra. Lakeline 2013, Fall 2013, 23–30.
[16]  Hall, S.J.; Zedler, J.B. Constraints on sedge meadow self-restoration in urban wetlands. Restor. Ecol. 2010, 18, 671–680, doi:10.1111/j.1526-100X.2008.00498.x.
[17]  Pathak, N. Assessment of the Hydroecology of Wingra Marsh at the University of Wisconsin Arboretum. Master’s Thesis, University of Wisconsin-Madison, Madison, WI, USA, 1 December 2009.
[18]  Boers, A.M.; Veltman, R.L.D.; Zedler, J.B. Typha x glauca dominance and extended hydroperiod constrain restoration of wetland diversity. Ecol. Eng. 2007, 29, 232–244, doi:10.1016/j.ecoleng.2006.04.011.
[19]  Boers, A.M.; Zedler, J.B. Stabilized water levels and Typha invasiveness. Wetlands 2008, 28, 676–685, doi:10.1672/07-223.1.
[20]  Irwin, H. A Natural History Study of the University of Wisconsin Arboretum. Master’s Thesis, University of Wisconsin-Madison, Madison, WI, USA, 16 May 1973.
[21]  Arboretum Leaflets (#1-30). Available online: http://uwarboretum.org/publications/leaflets/ (accessed on 22 September 2013).
[22]  Woo, I.; Zedler, J.B. Can nutrients alone shift a sedge meadow towards dominance by the invasive Typha x glauca? Wetlands 2002, 22, 509–521, doi:10.1672/0277-5212(2002)022[0509:CNASAS]2.0.CO;2.
[23]  Lindig-Cisneros, R.; Zedler, J.B. Phalaris arundinacea seedling establishment: Effects of canopy complexity in fen, mesocosm, and restoration experiments. Can. J. Botany 2002, 80, 617–624, doi:10.1139/b02-042.
[24]  Students in Water Resources Management. Restoration of the Arboretum’s Eastern Wetlands; Nelson Institute of Environmental Studies, University of Wisconsin-Madison: Madison, WI, USA, 2008.
[25]  Werner, K.J.; Zedler, J.B. How sedge meadow soils, microtopography, and vegetation respond to sedimentation. Wetlands 2002, 22, 451–466, doi:10.1672/0277-5212(2002)022[0451:HSMSMA]2.0.CO;2.
[26]  Wilcox, J.C.; Healy, M.T.; Zedler, J.B. Restoring native vegetation to an urban wet meadow dominated by reed canarygrass (Phalaris arundinacea l.) in Wisconsin. Nat. Areas J. 2007, 27, 354–365, doi:10.3375/0885-8608(2007)27[354:RNVTAU]2.0.CO;2.
[27]  Curtis, J.T. Arboretum Master Development Plan, I—The Prairie; University of Wisconsin Arboretum: Madison, WI, USA, 1951.
[28]  Snyder, T.A., III. A Spatial Analysis of Grassland Species Richness in Curtis Prairie. Master’s Thesis, University of Wisconsin-Madison, Madison, WI, USA, 3 May 2004.
[29]  Hansson, L.A.; Bronmark, C.; Nilsson, P.A.; Abjornsson, K. Conflicting demands on wetland ecosystem services: Nutrient retention, biodiversity or both? Freshw. Biol. 2005, 50, 705–714, doi:10.1111/j.1365-2427.2005.01352.x.
[30]  Kline, V.M. Long Range Management Plan Arboretum Ecological Communities; University of Wisconsin Arboretum: Madison, WI, USA, 1992.
[31]  Boehm, H.I.A. Achieving Vegetated Swales for Urban Stormwater Management: Lessons Learned & Research Setbacks. Master’s Thesis, University of Wisconsin-Madison, Madison, WI, USA, 14 July 2011.
[32]  Doherty, J.M.; Miller, J.F.; Prellwitz, S.G.; Thompson, A.M.; Loheide, S.L.; Zedler, J.B. Bundles and tradeoffs among six wetland services were associated with hydrologic regime. Ecosystems 2013. submitted for publication.
[33]  Prellwitz, S.G.; Thompson, A.M. Biota and hydrology influence soil stability in constructed wetlands. Ecol. Eng. 2013. submitted for publication.
[34]  Berendse, F.; Oomes, M.J.M.; Altena, H.J.; Elberse, W.T. Experiments on the restoration of species-rich meadows in the netherlands. Biol. Conserv. 1992, 62, 59–65, doi:10.1016/0006-3207(92)91152-I.
[35]  Riha, K. University of Wisconsin, Madison, WI, 2010. Unpublished work.
[36]  Simberloff, D.; Von Holle, B. Positive interactions of nonindigenous species: Invasional meltdown? Biol. Invasions 1999, 1, 21–32, doi:10.1023/A:1010086329619.
[37]  Larkin, D.J.; Lishawa, S.C.; Tuchman, N.C. Appropriation of nitrogen by the invasive cattail Typha x glauca. Aquat. Botany 2012, 100, 62–66.
[38]  Larkin, D.J.; Freyman, M.J.; Lishawa, S.C.; Geddes, P.; Tuchman, N.C. Mechanisms of dominance by the invasive hybrid cattail Typha x glauca. Biol. Invasions 2012, 14, 65–77, doi:10.1007/s10530-011-0059-y.
[39]  Vaccaro, L.E.; Bedford, B.L.; Johnston, C.A. Litter accumulation promotes dominance of invasive species of cattails (Typha spp.) in lake ontario wetlands. Wetlands 2009, 29, 1036–1048, doi:10.1672/08-28.1.
[40]  Zedler, J.B. Feedbacks that might sustain natural, invaded and restored states in herbaceous wetlands. In New Models for Ecosystem Dynamics and Restoration; Hobbs, R., Suding, K.N., Eds.; Island Press: Washington, DC, USA, 2009; pp. 236–258.
[41]  Eppinga, M.B.; Kaproth, M.A.; Collins, A.R.; Molofsky, J. Litter feedbacks, evolutionary change and exotic plant invasion. J. Ecol. 2011, 99, 503–514.
[42]  Kaproth, M.A.; Eppinga, M.B.; Molofsky, J. Leaf litter variation influences invasion dynamics in the invasive wetland grass Phalaris arundinacea. Biol. Invasions 2013, 15, 1819–1832, doi:10.1007/s10530-013-0411-5.
[43]  Healy, M.T.; Zedler, J.B. Set-backs in replacing Phalaris arundinacea monotypes with sedge meadow vegetation. Restor. Ecol. 2010, 18, 155–164, doi:10.1111/j.1526-100X.2009.00645.x.
[44]  Wisconsin Reed Canary Grass Management Working Group. Reed Canary Grass (Phalaris arundinacea) Management Guide: Recommendations for Landowners and Restoration Professionals. PUB-FR-428 2009, Available online: http://dnr.wi.gov/topic/forestmanagement/documents/pub/FR-428.pdf (accessed on 3 August 2013).
[45]  Choi, Y.D.; Temperton, V.M.; Allen, E.B.; Grootjans, A.P.; Halassy, M.; Hobbs, R.J.; Naeth, M.A.; Torok, K. Ecological restoration for future sustainability in a changing environment. Ecoscience 2008, 15, 53–64, doi:10.2980/1195-6860(2008)15[53:ERFFSI]2.0.CO;2.
[46]  Wassen, M.J.; Venterink, H.O.; Lapshina, E.D.; Tanneberger, F. Endangered plants persist under phosphorus limitation. Nature 2005, 437, 547–550, doi:10.1038/nature03950.
[47]  Gallagher, S.K. Use of Nitrogen and Water Treatments to Manipulate Carex stricta Lam Propagules. Master’s Thesis, University of Wisconsin-Madison, Madison, WI, USA, 4 December 2009.
[48]  Kercher, S.M.; Herr-Turoff, A.; Zedler, J.B. Understanding invasion as a process: The case of Phalaris arundinacea in wet prairies. Biol. Invasions 2007, 9, 657–665, doi:10.1007/s10530-006-9066-9.
[49]  Olson, E.R.; Ventura, S.J.; Zedler, J.B. Merging geospatial and field data to predict the distribution and abundance of an exotic macrophyte in a large wisconsin reservoir. Aquatic Botany 2012, 96, 31–41, doi:10.1016/j.aquabot.2011.09.007.
[50]  Aronson, J.; Alexander, S. Ecosystem restoration is now a global priority: Time to roll up our sleeves. Restor. Ecol. 2013, 21, 293–296, doi:10.1111/rec.12011.
[51]  Selbig, W.R.; Balster, N.J. Evaluation of Turf Grass and Prairie Vegetated Rain Gardens in a Clay and Sand Soil: Madison, Wisconsin, Water Years 2004–2008; US Geological Services: Middleton, WI, USA, 2009.
[52]  Ardon, M.; Montanari, S.; Morse, J.L.; Doyle, M.W.; Bernhardt, E.S. Phosphorus export from a restored wetland ecosystem in response to natural and experimental hydrologic fluctuations. J. Geophys. Res. Biogeosci. 2010, 115, doi:10.1029/2009JG001169.
[53]  Gusewell, S.; Bailey, K.M.; Roem, W.J.; Bedford, B.L. Nutrient limitation and botanical diversity in wetlands: Can fertilisation raise species richness? Oikos 2005, 109, 71–80, doi:10.1111/j.0030-1299.2005.13587.x.
[54]  Atkinson, R.B.; Perry, J.E.; Noe, G.B.; Daniels, W.L.; Cairns, J., Jr. Primary productivity in 20-year old created wetlands in southwestern virginia. Wetlands 2010, 30, 200–210, doi:10.1007/s13157-010-0033-y.
[55]  Gift, D.M.; Groffman, P.M.; Kaushal, S.S.; Mayer, P.M. Denitrification potential, root biomass, and organic matter in degraded and restored urban riparian zones. Restor. Ecol. 2010, 18, 113–120.
[56]  Watson, C.C.; Abt, S.R.; Derrick, D. Willow posts bank stabilization. J. Am. Water Resour. Assoc. 1997, 33, 293–300, doi:10.1111/j.1752-1688.1997.tb03510.x.
[57]  Pezeshki, S.R.; Shields, F.D. Black willow cutting survival in streambank plantings, southeastern united states. J. Am. Water Resour. Assoc. 2006, 42, 191–200.
[58]  Pezeshki, S.R.; Li, S.W.; Shields, F.D.; Martin, L.T. Factors governing survival of black willow (Salix nigra) cuttings in a streambank restoration project. Ecol. Eng. 2007, 29, 56–65, doi:10.1016/j.ecoleng.2006.07.014.
[59]  Schimel, D.S.; Asner, G.P.; Moorcroft, P. Observing changing ecological diversity in the anthropocene. Front. Ecol. Environ. 2013, 11, 129–137, doi:10.1890/120111.
[60]  Zedler, J.Z. the Minneapolis Convention Center in Minneapolis, MN, USA. Personal Observation, 6, August, 2013.
[61]  Cookas, M. St. Mary’s Greek Orthodox Church. Available online: http://www.afs.nonprofitoffice.com/vertical/Sites/%7B7FB21E8B-C13D-4E8E-B9BC-C00DD2CB65AE%7D/uploads/%7B1159F1A4-72A4-4F32-B0D3-70DE64CB5357%7D.PDF (accessed on 1 September 2013).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133