The main aim of monitoring wells is to assess the conditions of groundwater quality in the aquifer system. An inappropriate distribution of sampling wells could produce insufficient or redundant data concerning groundwater quality. An optimal selection of representative monitoring well locations can be obtained by considering the natural and anthropogenic potential of pollution sources; the hydrogeological setting; and assessment of any existing data regarding monitoring networks. The main objective of this paper was to develop a new approach to identifying areas with a high risk of nitrate pollution for the Amol-Babol Plain, Iran. The indicator kriging method was applied to identify regions with a high probability of nitrate contamination using data obtained from 147 monitoring wells. The US-EPA DRASTIC method was then used in a GIS environment to assess groundwater vulnerability to nitrate contamination, and combined with data concerning the distribution of sources to produce a risk map. In the study area, around 3% of the total area has a strong probability of exceeding the nitrate threshold and a high–moderate risk of pollution, but is not covered adequately by sampling wells. However, the number of monitoring wells could be reduced in most parts of the study area to minimize redundant data and the cost of monitoring.
References
[1]
Jang, C.-S.; Chen, S.-K.; Kuo, Y.-M. Applying indicator-based geostatistical approaches to determine potential zones of groundwater recharge based on borehole data. Catena 2013, 101, 178–187, doi:10.1016/j.catena.2012.09.003.
[2]
Arslan, H. Spatial and temporal mapping of groundwater salinity using ordinary kriging and indicator kriging: The case of Bafra Plain, Turkey. Agric. Water Manag. 2012, 113, 57–63.
[3]
Mogheir, Y.; Singh, V.P.; Lima, J.L.M.P. Spatial assessment and redesign of a groundwater quality monitoring network using entropy theory, Gaza Strip, Palestine. Hydrogeol. J. 2006, 14, 700–712.
[4]
Júnez-Ferreira, H.E.; Herrera, G.S. A geostatistical methodology for the optimal design of space-time hydraulic head monitoring networks and its application to the Valle de Querétaro aquifer. Environ. Monit. Assess. 2013, 185, 3527–3549, doi:10.1007/s10661-012-2808-5.
[5]
Baalousha, H. Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: A case study from Heretaunga Plains, New Zealand. Agric. Water Manag. 2010, 97, 240–246, doi:10.1016/j.agwat.2009.09.013.
[6]
Owlia, R.; Abrishamchi, A.; Tajrishy, M. Spatial-temporal assessment and redesign of groundwater quality monitoring network: A case study. Environ. Monit. Assess. 2011, 172, 263–273, doi:10.1007/s10661-010-1332-8.
[7]
Yeh, H.F.; Lee, C.H.; Hsu, K.C.; Chang, P.H. GIS for the assessment of the groundwater recharge potential zone. Environ. Geol. 2009, 58, 185–195.
[8]
Piccini, C.; Marchetti, A.; Farina, R.; Francaviglia, R. Application of indicator kriging to evaluate the probability of exceeding nitrate contamination thresholds. Int. J. Environ. Res. 2012, 6, 853–862.
[9]
Caridad-Cancela, R.; Vàzquez, E.V.; Vieira, S.R.; Abreu, C.A.; Gonzàlez, A.P. Assessing the spatial uncertainty of mapping trace elements in cultivated fields. Commun. Soil Sci. Plant Anal. 2005, 36, 253–274, doi:10.1081/CSS-200043078.
[10]
Environmental Systems Research Institute (ESRI). Using ArcGIS Geostatistical Analyst; ESRI: Redlands, CA, USA, 2003.
[11]
Journel, A. Non-parametric estimation of spatial distribution. Math. Geol. 1983, 15, 445–468, doi:10.1007/BF01031292.
[12]
Goovaerts, P. Comparative performance of indicator algorithms for modelling conditional probability distribution function. Math. Geol. 1994, 26, 389–411, doi:10.1007/BF02089230.
[13]
Farjad, B.; Helmi, Z.M.S.; Thamer, A.M.; Pirasteh, S.; Wijesekara, N. Groundwater intrinsic vulnerability and risk mapping. Proc. ICE Water Manag. 2012, 165, 441–450, doi:10.1680/wama.10.00018.
[14]
Babiker, I.S.; Mohamed, M.A.A.; Hiyama, T.; Kato, K. A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Sci. Total Environ. 2005, 345, 127–140, doi:10.1016/j.scitotenv.2004.11.005.
[15]
Boughriba, M.; Barkaoui, A.; Zarhloule, Y.; Lahmer, Z.; Houadi, B.E.; Verdoya, M. Groundwater vulnerability and risk mapping of the Angad transboundary aquifer using DRASTIC index method in GIS environment. Arab. J. Geosci. 2010, 3, 207–220, doi:10.1007/s12517-009-0072-y.
[16]
Rezaei, F.; Safavi, H.; Ahmadi, A. Groundwater vulnerability assessment using fuzzy logic: A case study in the Zayandehrood Aquifers, Iran. Environ. Manag. 2013, 51, 267–277, doi:10.1007/s00267-012-9960-0.
[17]
Adamat, R.; Foster, I.; Baban, S. Groundwater vulnerability and risk mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, remote sensing and DRASTIC. J. Appl. Geogr. 2003, 23, 303–324, doi:10.1016/j.apgeog.2003.08.007.
[18]
Vias, J.; Andreo, B.; Ravbar, N.; Hotzl, H. Mapping the vulnerability of groundwater to the contamination of four carbonate aquifers in Europe. J. Environ. Manag. 2010, 91, 1500–1510, doi:10.1016/j.jenvman.2010.02.025.
[19]
Chadalavada, S.; Datta, B. Dynamic optimal monitoring network design for transient transport of pollutants in groundwater aquifer. Water Resour. Manag. 2008, 22, 561–670.
[20]
Preziosi, E.; Petrangeli, A.B.; Giuliano, G. Tailoring groundwater quality monitoring to vulnerability: A GIS procedure for network design. Environ. Monit. Assess. 2013, 185, 3759–3781, doi:10.1007/s10661-012-2826-3.
[21]
Yeh, M.S.; Lin, Y.-P.; Chang, L.-C. Designing an optimal multivariate geostatistical groundwater quality monitoring network using factorial kriging and genetic algorithms. Environ. Geol. 2006, 50, 101–121, doi:10.1007/s00254-006-0190-8.
[22]
Dawoud, M.A. Design of national groundwater quality monitoring network in Egypt. Environ. Monit. Assess. 2004, 96, 99–118, doi:10.1023/B:EMAS.0000031718.98107.eb.
[23]
Fakharian, K. Study of Prevention, Control and Reduce Pollution of Amol- Babol Aquifer. Hydrogeology Report of Amol-Babol Plain; Amirkabir University of Technology: Department of Environment of Iran: Tehran, Iran, 2010.
[24]
Goldberg, V.M. Groundwater pollution by nitrates from livestock wastes. Environ. Health Perspect 1989, 83, 19–25.
[25]
Ghods, M. Supplementary Environmental and Social Assessment of Alborz Intergrated Land and Water; Mahab Ghods Consulting Engineers: Tehran, Iran, 2004; p. 248.
[26]
McMahon, G.; Lloyd, O.B., Jr. Water-Quality Assessment of the Albemarle-Pamlico Drainage Basin, North Carolina and Virginia-Environmental Setting and Water-Quality Issues. U.S. Geological Survey Open-File Report; USGS: Denver, CO, USA, 1995; pp. 95–136.
[27]
World Health Organization (WHO). Nitrate and Nitrite in Drinking-Water, G.f.d.-w.q. Background Document for Development of WHO; WHO: Geneva, Switzerland, 2011.
[28]
Garner, B.D.; Mahler, B.J. Relation of Specific Conductance in Ground Water to Intersection of Flow Paths by Wells, and Associated Major Ion and Nitrate Geochemistry, Barton Springs Segment of the Edwards Aquifer, Austin, Texas, 1978–2003. USGS Scientific Investigations Report; USGS: Denver, CO, USA, 2007; p. 34.
[29]
APHA Standard Methods for the Examination of Water and Wastwater; American Public Health Association, American Water Workes Association, Water Environment Federation: Washigton, DC, USA, 2005.
[30]
Aller, L.; Bennet, T.; Lehr, J.H.; Petty, R. DRASTIC: A standardized System for Evaluating Groundwater Pollution Using Hydrogeologic Settings. 600/2-87-035; The US Environmental Protection Agency (EPA): Washigton, DC, USA, 1987.
[31]
Assaf, H.; Saadeh, M. Geostatistical assessment of groundwater nitrate contamination with reflection on DRASTIC vulnerability assessment: The case of the Upper Litani basin, Lebanon. Water Resour. Manag. 2009, 23, 775–796, doi:10.1007/s11269-008-9299-8.
[32]
Secunda, S.; Collin, M.; Melloul, A.J. Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive land use in Israel’s Sharon region. J. Environ. Manag. 1998, 54, 39–57, doi:10.1006/jema.1998.0221.
[33]
Gomezdelcampo, E.; Dickerson, J.R. A modified DRASTIC model for siting confined animal feeding operations in williams county, Ohio, USA. Environ. Geol. 2008, 55, 1821–1832, doi:10.1007/s00254-007-1133-8.
[34]
Matheron, G. Les variables régionalisées et leur estimation; Masson: Paris, France, 1970.
[35]
Journel, A.; Huijbregts, C.J. Mining Geostatistics; Academic Press: New York, NY, USA, 1978.
[36]
Isaaks, E.H.; Srivastava, R.M. An Introduction to Applied Geostatistics; Oxford University Press: New York, NY, USA, 1989.
[37]
Antunes, I.M.H.R.; Albuquerque, M.T.D. Using indicator kriging for the evaluation of arsenic potential contamination in an abandoned mining area (Portugal). Sci. Total Environ. 2013, 442, 545–552, doi:10.1016/j.scitotenv.2012.10.010.
[38]
Uyan, M.; Cay, T. Geostatistical methods for mapping groundwater nitrate concentration. In Proceedings of the 3rd international conference on cartography and GIS, Nessebar, Bulgaria, 15–20 June 2010; 2010.
[39]
Deutsch, C.V.; Journel, A.G. GSLIB, Geostatistical Software Library and User’s Guide; Oxford University Press: New York, NY, USA, 1998.
[40]
Journel, A.; Keith, L.H. Non-Parametric Geostatistics for Risk and Additional Sampling Assessment, Principles of Environmental Sampling; American Chemical Society: Washington, DC, USA, 1988.
[41]
Rahman, A. A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India. Appl. Geogr. 2008, 28, 32–53, doi:10.1016/j.apgeog.2007.07.008.
[42]
Guttman, J. Hydrogeology of the Eastern Aquifer in the Judea Hills and Jordan Valley. Multi-Lateral Project 02WT9719, Sub Project B, Final Report: Mekorot Report No. 468; Mekorot Co.: Tel-Aviv, Israel, 2000.
[43]
Saidi, S.; Bouri, S.; Dhia, H.B.; Anselme, B. A GIS-based susceptibility indexing method or irrigation and drinking water management planning: Application to Chebba—Mellouleche aquifer, Tunisia. Agric. Water Manag. 2009, 96, 1683–1690, doi:10.1016/j.agwat.2009.07.005.
[44]
Saidi, S.; Bouri, S.; Dhia, H.B. Groundwater vulnerability and risk mapping of the Hajeb-jelma aquifer (central Tunisia) using a GIS-based DRASTIC model. Environ. Earth Sci. 2010, 59, 1579–1588, doi:10.1007/s12665-009-0143-0.
[45]
Townsend, M.A.; Marks, E.T. Occurrence of nitrate in soil and ground water in south-central Kansas. In Proceedings of Ground Water Managementin Cluster of Conferences, Agricultural Impacts on Ground Water Quality Session, Kansas City, MO, USA, February 1990; pp. 145–158.