The latest Version-7 (V7) Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) products were released by the National Aeronautics and Space Administration (NASA) in December of 2012. Their performance on different climatology, locations, and precipitation types is of great interest to the satellite-based precipitation community. This paper presents a study of TMPA precipitation products (3B42RT and 3B42V7) for an extreme precipitation event in Beijing and its adjacent regions (from 00:00 UTC 21 July 2012 to 00:00 UTC 22 July 2012). Measurements from a dense rain gauge network were used as the ground truth to evaluate the latest TMPA products. Results are summarized as follows. Compared to rain gauge measurements, both 3B42RT and 3B42V7 generally captured the rainfall spatial and temporal pattern, having a moderate spatial correlation coefficient (CC, 0.6) and high CC values (0.88) over the broader Hebei, Beijing and Tianjin (HBT) regions, but the rainfall peak is 6 h ahead of gauge observations. Overall, 3B42RT showed higher estimation than 3B42V7 over both HBT and Beijing. At the storm center, both 3B42RT and 3B42V7 presented a relatively large deviation from the temporal variation of rainfall and underestimated the storm by 29.02% and 36.07%, respectively. The current study suggests that the latest TMPA products still have limitations in terms of resolution and accuracy, especially for this type of extreme event within a latitude area on the edge of coverage of TRMM precipitation radar and microwave imager. Therefore, TMPA users should be cautious when 3B42RT and 3B42V7 are used to model, monitor, and forecast both flooding hazards in the Beijing urban area and landslides in the mountainous west and north of Beijing.
References
[1]
Chen, S.; Hong, Y.; Cao, Q.; Kirstetter, P.E.; Gourley, J.J.; Qi, Y.; Zhang, J.; Howard, K.; Hu, J.; Wang, J. Performance evaluation of radar and satellite rainfalls for typhoon morakot over Taiwan: Are remote-sensing products ready for gauge denial scenario of extreme events? J. Hydrol. 2013, 506, 4–13, doi:10.1016/j.jhydrol.2012.12.026.
[2]
Fang, X.; Kuo, Y.H.; Wang, A. The impacts of Taiwan topography on the predictability of typhoon morakot’s record-breaking rainfall: A high-resolution ensemble simulation. Weather Forecast. 2011, 26, 613–633, doi:10.1175/WAF-D-10-05020.1.
[3]
Hall, J.D.; Xue, M.; Ran, L.; Leslie, L.M. High resolution modeling of typhoon morakot (2009): Vortex rossby waves and their role in extreme precipitation over Taiwan. J. Atmos. Sci. 2013, 70, 163–186, doi:10.1175/JAS-D-11-0338.1.
[4]
Webster, P.; Toma, V.; Kim, H.M. Were the 2010 Pakistan floods predictable? Geophys. Res. Lett. 2011, 38, doi:10.1029/2010GL046346.
[5]
Sang, Y.F.; Wang, Z.; Liu, C. What factors are responsible for the Beijing storm? Nat. Hazards 2013, 65, 2399–2400, doi:10.1007/s11069-012-0426-8.
[6]
Grumm, R.H. Beijing Flood of 21 July 2012. Available online: http://nws.met.psu.edu/severe/2012/21Jul2012.pdf (accessed on 30 November 2012).
[7]
Walsh, B. Frankenstorm: Why Hurricane Sandy Will Be Historic. Available online: http://science. time.com/2012/10/29/frankenstorm-why-hurricane-sandy-will-be-historic/ (accessed on 30 November 2012).
[8]
Meehl, G.A.; Stocker, T.F.; Collins, W.D.; Friedlingstein, P.; Gaye, T.; Gregory, J.M.; Kitoh, A.; Knutti, R.; Murphy, J.M.; Noda, A.; et al. Global Climate Projections. In Climate Change 2007: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2007.
[9]
Zhang, D.-L.; Lin, Y.; Zhao, P.; Yu, X.; Wang, S.; Kang, H.; Ding, Y. The Beijing extreme rainfall of 21 July 2012: “Right results” but for wrong reasons. Geophys. Res. Lett. 2013, 40, 1426–1431, doi:10.1002/grl.50304.
[10]
Wang, K.; Wang, L.; Wei, Y.-M.; Ye, M. Beijing storm of July 21, 2012: Observations and reflections. Nat. Hazards 2013, 67, 969–974, doi:10.1007/s11069-013-0601-6.
[11]
Sorooshian, S.; Hsu, K.L.; Gao, X.; Gupta, H.V.; Imam, B.; Braithwaite, D. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Am. Meteorol. Soc. 2000, 81, 2035–2046, doi:10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.
[12]
Hong, Y.; Hsu, K.L.; Sorooshian, S.; Gao, X. Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteorol. 2004, 43, 1834–1853, doi:10.1175/JAM2173.1.
[13]
Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 487–503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.
[14]
Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55, doi:10.1175/JHM560.1.
[15]
Ruin, I.; Lutoff, C.; Creton-Cazanave, L.; Anquetin, S.; Borga, M.; Chardonnel, S.; Creutin, J.; Gourley, J.; Gruntfest, E.; Nobert, S. Toward a space-time framework for integrated water and society studies. Bull. Am. Meteorol. Soc. 2012, 93, doi:10.1175/BAMS-D-11-00226.1.
Tian, Y.; Peters-Lidard, C.D.; Choudhury, B.J.; Garcia, M. Multitemporal analysis of TRMM-based satellite precipitation products for land data assimilation applications. J. Hydrometeorol. 2007, 8, 1165–1183, doi:10.1175/2007JHM859.1.
[18]
Kidd, C.; Huffman, G. Global precipitation measurement. Meteorol. Appl. 2011, 18, 334–353.
[19]
Chen, S.; Hong, Y.; Gourley, J.J.; Huffman, G.J.; Tian, Y.; Cao, Q.; Kirstetter, P.E.; Hu, J.; Hardy, J.; Xue, X.; et al. Evaluation of the successive V6 and V7 TRMM multi-satellite precipitation analysis over the continental United States. Water Resour. Res. 2013, 10, doi:10.1002/2012WR012795.
[20]
Chen, S.; Hong, Y.; Gourley, J.J.; Kirstette, P.E.; Yong, B.; Tian, Y.; Zhang, Z.; Hardy, J. Similarity and difference of the two successive V6 and V7 TRMM multi-satellite precipitation analysis (TMPA) performance over China. J. Geophys. Res. 2013, 118, doi:10.1002/2013jd019964.
[21]
Aonashi, K.; Liu, G. Passive microwave precipitation retrievals using TMI during the baiu period of 1998. Part I: Algorithm description and validation. J. Appl. Meteorol. 2000, 39, 2024–2037, doi:10.1175/1520-0450(2000)039<2024:PMPRUT>2.0.CO;2.
[22]
Bohren, C.F.; Battan, L.J. Radar backscattering by inhomogeneous precipitation particles. J. Atmos. Sci. 1980, 37, 1821–1827, doi:10.1175/1520-0469(1980)037<1821:RBBIPP>2.0.CO;2.
[23]
Lehning, M.; L?we, H.; Ryser, M.; Raderschall, N. Inhomogeneous precipitation distribution and snow transport in steep terrain. Water Resour. Res. 2008, 44, doi:10.1029/2007WR006545.
[24]
Smith, P.L.; Liu, Z.; Joss, J. A study of sampling-variability effects in raindrop size observations. J. Appl. Meteorol. 1993, 32, 1259–1269, doi:10.1175/1520-0450(1993)032<1259:ASOSVE>2.0.CO;2.
[25]
Anagnostou, E.N.; Krajewski, W.F.; Smith, J. Uncertainty quantification of mean-areal radar-rainfall estimates. J. Atmos. Ocean. Technol. 1999, 16, 206–215, doi:10.1175/1520-0426(1999)016<0206:UQOMAR>2.0.CO;2.
[26]
Cuccoli, F.; Facheris, L.; Giuli, D.; Meoni, L. Spatial Rainfall Rate Estimation through Combined Use of Radar Reflectivity and Raingauge Data. In Proceedings of the Geoscience and Remote Sensing Symposium 2004, Anchorage, AK, USA, 20–24 September 2004; pp. 440–443.
[27]
Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.P.; Janowiak, J.; Rudolf, B.; Schneider, U.; Curtis, S.; Bolvin, D. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 2003, 4, 1147–1167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.
[28]
Chiu, L.S.; Liu, Z.; Vongsaard, J.; Morain, S.; Budge, A.; Neville, P.; Bales, C. Comparison of TRMM and water district rain rates over New Mexico. Adv. Atmos. Sci. 2006, 23, 1–13, doi:10.1007/s00376-006-0001-x.
[29]
Chokngamwong, R.; Chiu, L.S. Thailand daily rainfall and comparison with TRMM products. J. Hydrometeorol. 2008, 9, 256–266, doi:10.1175/2007JHM876.1.
[30]
Nicholson, S.E.; Some, B.; McCollum, J.; Nelkin, E.; Klotter, D.; Berte, Y.; Diallo, B.; Gaye, I.; Kpabeba, G.; Ndiaye, O. Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part II: Validation of TRMM rainfall products. J. Appl. Meteorol. 2003, 42, 1355–1368, doi:10.1175/1520-0450(2003)042<1355:VOTAOR>2.0.CO;2.
[31]
Yong, B.; Ren, L.L.; Hong, Y.; Wang, J.H.; Gourley, J.J.; Jiang, S.H.; Chen, X.; Wang, W. Hydrologic evaluation of Multisatellite Precipitation Analysis standard precipitation products in basins beyond its inclined latitude band: A case study in Laohahe basin, China. Water Resour. Res. 2010, 46, doi:10.1029/2009WR008965.
[32]
Ren, Z.; Wang, G.; Zou, F.; Zhang, H. The research of precipitation measurement errors in China. Acta Meteorol. Sin. 2003, 61, 621–627.
[33]
Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Adler, R.F. Highlights of Version 7 TRMM Multi-satellite Precipitation Analysis (TMPA). In Proceedings of the 5th International Precipitation Working Group Workshop, Hamburg, Germany, 11–15 October 2010.
[34]
Chen, S.; Kirstette, P.E.; Hong, Y.; Gourley, J.; Zhang, J.; Howard, K.; Hu, J. Quantification of Spatial Errors of Precipitation Rates and Types from the TRMM Precipitation Radar (the latest successive V6 and V7) over the United States. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 3–7 December 2012.
[35]
Kirstetter, P.-E.; Hong, Y.; Gourley, J.; Schwaller, M.; Petersen, W.; Zhang, J. Comparison of TRMM 2A25 products version 6 and version 7 with NOAA/NSSL ground radar-based national mosaic QPE. J. Hydrometeorol. 2013, 14, 661–669, doi:10.1175/JHM-D-12-030.1.
[36]
Huffman, G.J. Updating the GPCP Global Precipitation Datasets. In Proceedings of the 17th Conference on Satellite Meteorology and Oceanography, Annapolis, MD, USA, 27 September–1 October 2010.
[37]
Huffman, G.J.; Bolvin, D.T. TRMM and Other Data Precipitation Data Set Documentation. Available online: ftp://precip.gsfc.nasa.gov/pub/trmmdocs/3B42_3B43_doc.pdf (accessed on 30 January 2013).
[38]
Negri, A.J.; Adler, R.F. An intercomparison of three satellite infrared rainfall techniques over Japan and surrounding waters. J. Appl. Meteorol. 1993, 32, 357–373, doi:10.1175/1520-0450(1993)032<0357:AIOTSI>2.0.CO;2.
[39]
Tuttle, J.D.; Carbone, R.E.; Arkin, P.A. Comparison of ground-based radar and geosynchronous satellite climatologies of warm-season precipitation over the United States. J. Appl. Meteorol. Climatol. 2008, 47, 3264–3270, doi:10.1175/2008JAMC2000.1.
[40]
Full-resolution IR Data. Available online: http://www.cpc.ncep.noaa.gov/products/global_precip/html/wpage. full_res.shtml (accessed on 23 December 2013).
[41]
Hirpa, F.A.; Gebremichael, M.; Hopson, T. Evaluation of high-resolution satellite precipitation products over very complex terrain in Ethiopia. J. Appl. Meteorol. Climatol. 2010, 49, 1044–1051, doi:10.1175/2009JAMC2298.1.
[42]
Tian, Y.; Peters-Lidard, C.D.; Adler, R.F.; Kubota, T.; Ushio, T. Evaluation of GSMaP precipitation estimates over the contiguous United States. J. Hydrometeorol. 2010, 11, 566–574, doi:10.1175/2009JHM1190.1.