全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Water  2014 

Humans and the Water Environment: The Need for Coordinated Data Collection

DOI: 10.3390/w6010001

Keywords: environmental behavior, sustainability science, science policy, survey research, water conservation, water recreation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Efforts to observe humans in relation to nature over time and at large scale are few and disjointed in ways that impede progress in building scientific foundations for sustainability. Two water-oriented national-scale case studies highlight the challenges of integrating existing natural system and social system data: one concerns the influence of environmental attitudes and water quality on water conservation efforts; the other explores relationships between environmental attitudes, water quality and recreation behavior. The case studies show that coupled research conducted at large scale can yield new insights, but uncoordinated data limit meaningful inference. We propose salient features of a coordinated observation program for water.

References

[1]  Braden, J.B.; Brown, D.; Dozier, J.; Gober, P.; Maidment, D.R.; Schneider, S.L.; Schultz, P.W.; Shortle, J.S.; Swallow, S.K.; Werner, C.M. Social science in a water observing system. Water Resour. Res. 2009, 45, doi:10.1029/2009WR008216.
[2]  Schnoor, J.L. Water Sustainability in a Changing World. The 2010 Clarke Prize Lecture; National Water Research Institute: Fountain Valley, CA, USA, 2010. Available online: http://www.nwri-usa.org/pdfs/2010ClarkePrizeLecture.pdf (accessed on 27 August 2013).
[3]  Mather, M. Four Scenarios for US Population Growth; Population Reference Bureau: New York, NY, USA, 2009.
[4]  United Nations. World Population to 2300. ST/ESA/SER.A/236; Department of Economic and Social Affairs: New York, NY, USA, 2004. Available online: http://www.un.org/esa/population/publications/ longrange2/WorldPop2300final.pdf (accessed on 27 August 2013).
[5]  Intergovernmental Panel on Climate Change. Climate Change 2007: Impacts, Adaptation and Vulnerability; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007.
[6]  Saad, L. Water pollution Americans’ top green concern. Available online: http://www.gallup.com/.poll/117079/water-pollution-americans-top-green-concern.aspx (accessed on 8 December 2013).
[7]  United Nations. Millennium Development Goals Report 2012; United Nations: New York, NY, USA, 2012.
[8]  US Environmental Protection Agency. The Clean Water and Drinking Water Infrastructure Gap Analysis. EPA-816-R-02-020; Office of Water: Washington, DC, USA, 2002. Available online: http://www.epa.gov/ogwdw/gapreport.pdf (accessed on 27 August 2013).
[9]  Wescoat, J.L., Jr; White, G.F. Water for Life: Water Management and Environmental Policy; Cambridge University Press: Cambridge, UK, 2003.
[10]  Sivapalan, M.; Savenije, H.H.G.; Bl?schl, G. Socio-hydrology: A new science of people and water. Hydrol. Proc. 2012, 26, 1270–1276, doi:10.1002/hyp.8426.
[11]  Dalhuisen, J.; Florax, M.R.; de Groot, H.L.F.; Nijkamp, P. Price and income elasticities of residential water demand: A meta-analysis. Land Econ. 2003, 79, 292–308, doi:10.2307/3146872.
[12]  Nelson, J.P.; Kennedy, P. The use (and abuse) of meta-analysis in environmental and natural resource economics: An assessment. Environ. Resour. Econ. 2009, 42, 345–377, doi:10.1007/s10640-008-9253-5.
[13]  Janssen, M.A.; Anderies, J.M.; Ostrom, E. Robustness of social-ecological systems to spatial and temporal variability. Soc. Nat. Resour. 2007, 20, 307–322, doi:10.1080/08941920601161320.
[14]  Hoehn, J. Methods to address selection effects in the meta regression and transfer of ecosystem values. Ecol. Econ. 2006, 60, 389–398, doi:10.1016/j.ecolecon.2006.05.021.
[15]  Rosenberger, R.S.; Johnston, R.J. Selection effects in meta-analysis and benefit transfer: Avoiding unintended consequences. Land Econ. 2009, 85, 410–428.
[16]  Gotway, C.A.; Young, L.J. Combining incompatible spatial data. J. Am. Stat. Assoc. 2001, 97, 632–648, doi:10.1198/016214502760047140.
[17]  Oregon Watershed Enhancement Board. Issues in the Aggregation of Data to Assess Environmental Conditions; Oregon Watershed Enhancement Board: Salem, OR, USA, 2009.
[18]  US Environmental Protection Agency. Wadeable Streams Assessment; Office of Research and Development Office of Water: Washington, DC, USA, 2006. Available online: http://water.epa.gov/type/rsl/monitoring/streamsurvey/ (accessed on 27 August 2013).
[19]  National Opinion Research Center. General Social Surveys, 1972–2012: Cumulative Code Book. University of Chicago Press: Chicago, IL, USA, 2013. Available online: http://www3.norc.org/GSS+Website/Documentation/ (accessed on 27 August 2013).
[20]  National Survey on Recreation and the Environment (NSRE). US Forest Service; South Research Station: Athens, GA, USA, 1994–2012. Available online: http://coastalsocioeconomics.noaa.gov/core/nsre/welcome.html (accessed on 27 August 2013).
[21]  Omernik, J.M. Ecoregions of the coterminous United States. Ann. Assoc. Am. Geogr. 1987, 77, 118–125, doi:10.1111/j.1467-8306.1987.tb00149.x.
[22]  Herlihy, A.T.; Larsen, D.P.; Paulsen, S.G.; Urquhart, N.S.; Rosenbaum, B.J. Designing a spatially balanced, randomized site selection process for regional stream surveys: The EMAP mid-Atlantic pilot study. Environ. Monit. Assess. 2000, 63, 95–113, doi:10.1023/A:1006482025347.
[23]  US Environmental Protection Agency. National Lakes Assessment 2012: A Fact Sheet for Communities. EPA 841‐F‐11‐007; Office of Water: Washington, DC, USA, 2011. Available online: http://water.epa.gov/type/lakes/assessmonitor/lakessurvey/upload/NLA-2012-Fact-Sheet-for-Communities.pdf (accessed on 27 August 2013).
[24]  US Environmental Protection Agency. National Coastal Conditions Report IV. Office of Water: Washington, DC, USA, 2012. Available online: http://water.epa.gov/type/oceb/assessmonitor/nccr/upload/Final-NCCR-IV-Fact-Sheet-3–14–12.pdf (accessed on 27 August 2013).
[25]  US Environmental Protection Agency. National Wetland Condition Assessment: Fact Sheet. EPA-843-F-08-001; Office of Water: Washington, DC, USA, 2008. Available online: http://www.fws.gov/wetlands/Documents/EPA-National-Wetland-Condition-Assessment-Fact-Sheet.pdf (accessed on 27 August 2013).
[26]  US Environmental Protection Agency. National Aquatic Resource Surveys; US Environmental Protection Agency: Washington, DC, USA, 2013. Available online: http://water.epa.gov/type/watersheds/monitoring/aquaticsurvey_index.cfm (accessed on 27 August 2013).
[27]  David, E.L. Public perceptions of water quality. Water Resour. Res. 1971, 7, 453–457, doi:10.1029/WR007i003p00453.
[28]  Another approach would use a composite measure of water qualities observed within a certain radial buffer around the polygons where GSS observations are reported. However, in the absence of any guidance in the data, the size of the buffer and scheme for weighting multiple WSA observations would be no less arbitrary than our chosen approach.
[29]  Abbasi, T.; Abassi, S.A. Water Quality Indices; Elsevier: Oxford, UK, 2012.
[30]  Van Damme, S.; Struyf, E.; Maris, T.; Ysebaert, T.; Dehairs, F.; Tackx, M.; Heip, C.; Meire, P. Spatial and temporal patterns of water quality along estuarine gradient of the Scheldt Estuary (Belgium and The Netherlands): Results of an integrated monitoring approach. Hydrobio 2005, 540, 29–45, doi:10.1007/s10750-004-7102-2.
[31]  Bayer, P.; Timmins, C. On the equilibrium properties of locational sorting models. J. Urban Econ. 2005, 57, 462–477, doi:10.1016/j.jue.2004.12.008.
[32]  Marsden, P.V. Social Trends in American Life: Findings from the General Social Survey Since 1972; Princeton University Press: Princeton, NJ, USA, 2012.
[33]  Schuett, M.A.; Warnick, R.B.; Lu, J. Qualitative analysis of national outdoor recreation surveys. J. Park Recreat. Adm. 2009, 27, 46–59.
[34]  US Census Bureau. United States Census 2010; US Census Bureau: Washington, DC, USA, 2010. Available online: http://www.census.gov/2010census/ (accessed on 27 August 2013).
[35]  O’Sullivan, D.; Unwin, D. Geographic Information Analysis; John Wiley: Hoboken, NJ, USA, 2003.
[36]  Hellerstein, D. Welfare estimation using aggregate and individual-observation models: A comparison using Monte Carlo techniques. Am. J. Agric. Econ. 1995, 77, 620–630, doi:10.2307/1243230.
[37]  Anselin, L. Under the hood: Issues in the specification and interpretation of spatial regression models. Agric. Econ. 2002, 27, 247–267, doi:10.1111/j.1574-0862.2002.tb00120.x.
[38]  Garcia-Valinas, M.A.; McIntyre, A.; Torgler, B. Volunteering, pro-environmental attitudes and norms. J. Socio Econ. 2012, 41, 455–467, doi:10.1016/j.socec.2011.07.001.
[39]  Diener, E.; Biswas-Diener, R. Will money increase subjective well-being? A literature review and guide to needed research. Soc. Indic. Res. 2002, 57, 119–169, doi:10.1023/A:1014411319119.
[40]  Easterlin, R.A. Explaining happiness. Proc. Nat. Acad. Sci. USA 2003, 100, 11176–11183, doi:10.1073/pnas.1633144100.
[41]  Liska, A.E. Emergent issues in the attitude-behavior consistency controversy. Am. Soc. Rev. 1974, 39, 261–272, doi:10.2307/2094237.
[42]  Ki, E.-J.; Hon, L.C. Causal linkages among relationship quality perception, attitude, and behavior intention in a membership organization. Int. J. Corp. Commun. 2012, 17, 187–208, doi:10.1108/13563281211220274.
[43]  Bollen, K. An alternative two stage least squares (2sls) estimator for latent variable equations. Psychomet 1996, 61, 109–121, doi:10.1007/BF02296961.
[44]  Long, J.S.; Freese, J. Regression Models for Categorical and Limited Dependent Variables Using Stata, 2nd ed. ed.; Stata Press: College Station, TX, USA, 2006.
[45]  Brown, T.C. The Marginal Economic Value of Streamflow from National Forests; USDA Forest Service Rocky Mountain Research Station: Fort Collins, CO, USA, 2004.
[46]  Kaczynski, A.; Henderson, K. Environmental correlates of physical activity: A review of evidence about parks and recreation. Leis. Sci. 2007, 29, 315–354, doi:10.1080/01490400701394865.
[47]  Parsons, G.R. A Primer on Nonmarket Valuation; Champ, P.A., Boyle, K.J., Brown, T.C., Eds.; Kluwer Academic Publishers: Dordrecht, UK, 2003; pp. 269–330.
[48]  Shonkwiler, J.S.; Shaw, D. Hurdle count-data models in recreation demand analysis. J. Agric. Resour. Econ. 1996, 21, 210–219.
[49]  Alexander, R.B.; Smith, R.A. Moving from Monitoring to Prediction: The Quality of the Nation’s Streams. Briefing Sheet; U.S. Geological Survey: Washington, DC, USA, 2005. Available online: http://water.usgs.gov/nawqa/briefing_sheet2.pdf (accessed on 12 December 2013).
[50]  Keiser, D. Personal Communication. Yale School of Forestry and Environmental Studies: 2013.
[51]  Hutchinson, K.J.; Haynes, D.A.; Schnoor, J.L. Human-impacted water resources: Domain stratification and mapping to determine hydrologically similar units. Environ. Sci. Technol. 2010, 44, 7890–7896, doi:10.1021/es101582c.
[52]  Dozier, J.; Braden, J.B.; Hooper, R.P.; Minsker, B.S.; Schnoor, J.L.; Bales, R.C.; Conklin, M.H.; Derry, L.A.; Harmon, T.; Michalak, A.; et al. Living in the Water Environment: The WATERS Network Science Plan; National Science Foundation: Arlington, VA, USA, 2009.
[53]  Anonymous referee, quoted comment received on 16 November 2013.
[54]  Krumm, J. A survey of computational location privacy. Pers. Ubiquitous Comput. 2009, 13, 391–399, doi:10.1007/s00779-008-0212-5.
[55]  Consortium of Universities for the Advancement of Hydrologic Sciences. Available online: http://wdc.cuahsi.org/ (accessed on 16 November 2013).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133