全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Viruses  2014 

Functional Characterization of a Bidirectional Plant Promoter from Cotton Leaf Curl Burewala Virus Using an Agrobacterium-Mediated Transient Assay

DOI: 10.3390/v6010223

Keywords: cotton leaf curl Burewala virus, agro-infiltration, bidirectional promoter, cis-regulatory elements, geminivirus

Full-Text   Cite this paper   Add to My Lib

Abstract:

The C1 promoter expressing the AC1 gene, and V1 promoter expressing the AV1 gene are located in opposite orientations in the large intergenic region of the Cotton leaf curl Burewala virus (CLCuBuV) genome. Agro-infiltration was used to transiently express putative promoter constructs in Nicotiana tabacum and Gossypium hirsutum leaves, which was monitored by a GUS reporter gene, and revealed that the bidirectional promoter of CLCuBuV transcriptionally regulates both the AC1 and AV1 genes. The CLCuBuV C1 gene promoter showed a strong, consistent transient expression of the reporter gene (GUS) in N. tabacum and G. hirsutum leaves and exhibited GUS activity two- to three-fold higher than the CaMV 35S promoter. The CLCuBuV bidirectional gene promoter is a nearly constitutive promoter that contains basic conserved elements. Many cis-regulatory elements (CREs) were also analyzed within the bidirectional plant promoters of CLCuBuV and closely related geminiviruses, which may be helpful in understanding the transcriptional regulation of both the virus and host plant.

References

[1]  Fauquet, C.; Briddon, R.; Brown, J.; Moriones, E.; Stanley, J.; Zerbini, M.; Zhou, X. Geminivirus strain demarcation and nomenclature. Arch. Virol. 2008, 153, 783–821, doi:10.1007/s00705-008-0037-6.
[2]  Stanley, J.B.D.M.; Briddon, R.W.; Brown, J.K.; Fauquet, C.M. Geminiviridae. In Virus Taxonomy, Viith Report of the Ictv; Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., Ball, L.A., Eds.; Elsevier/Academic Press: London, UK, 2005; pp. 301–326.
[3]  Odell, J.T.; Nagy, F.; Chua, N.-H. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35s promoter. Nature 1985, 313, 810–812, doi:10.1038/313810a0.
[4]  Xie, Y.; Liu, Y.; Meng, M.; Chen, L.; Zhu, Z. Isolation and identification of a super strong plant promoter from cotton leaf curl multan virus. Plant Mol. Biol. 2003, 53, 1–14, doi:10.1023/B:PLAN.0000009257.37471.02.
[5]  Pattanaik, S.; Dey, N.; Bhattacharyya, S.; Maiti, I.B. Isolation of full-length transcript promoter from the strawberry vein banding virus (SVBV) and expression analysis by protoplasts transient assays and in transgenic plants. Plant Sci. 2004, 167, 427–438, doi:10.1016/j.plantsci.2004.04.011.
[6]  Hanley-Bowdoin, L.; Settlage, S.B.; Orozco, B.M.; Nagar, S.; Robertson, D. Geminiviruses: Models for plant DNA replication, transcription, and cell cycle regulation. Crit. Rev. Plant Sci. 1999, 18, 71–106, doi:10.1080/07352689991309162.
[7]  Accotto, G.P.; Donson, J.; Mullineaux, P. Mapping of digitaria streak virus transcripts reveals different RNA species from the same transcription unit. EMBO J. 1989, 8, 1033–1039.
[8]  Petty, I.; Coutts, R.; Buck, K. Transcriptional mapping of the coat protein gene of tomato golden mosaic virus. J. Gen. Virol. 1988, 69, 1359–1365, doi:10.1099/0022-1317-69-6-1359.
[9]  Sunter, G.; Bisaro, D.M. Transcription map of the B genome component of tomato golden mosaic virus and comparison with a component transcripts. Virology 1989, 173, 647–655, doi:10.1016/0042-6822(89)90577-1.
[10]  Sunter, G.; Hartitz, M.D.; Bisaro, D.M. Tomato golden mosaic virus leftward gene expression: Autoregulation of geminivirus replication protein. Virology 1993, 195, 275–280, doi:10.1006/viro.1993.1374.
[11]  Sunter, G.; Bisaro, D.M. Identification of a minimal sequence required for activation of the tomato golden mosaic virus coat protein promoter in protoplasts. Virology 2003, 305, 452–462, doi:10.1006/viro.2002.1757.
[12]  Zhan, X.; Haley, A.; Richardson, K.; Morris, B. Analysis of the potential promoter sequences of african cassava mosaic virus by transient expression of the beta-glucuronidase gene. J. Gen. Virol. 1991, 72, 2849–2852, doi:10.1099/0022-1317-72-11-2849.
[13]  Haley, A.; Zhan, X.; Richardson, K.; Head, K.; Morris, B. Regulation of the activities of African cassava mosaic virus promoters by the AC1, AC2, and AC3 gene products. Virology 1992, 188, 905–909, doi:10.1016/0042-6822(92)90551-Y.
[14]  Hong, Y.; Stanley, J. Regulation of African cassava mosaic virus complementary-sense gene expression by N-terminal sequences of the replication-associated protein AC1. J. Gen. Virol. 1995, 76, 2415–2422, doi:10.1099/0022-1317-76-10-2415.
[15]  Frey, P.M.; Sch?rer-Hernández, N.G.; Fütterer, J.; Potrykus, I.; Puonti-Kaerlas, J. Simultaneous analysis of the bidirectional African cassava mosaic virus promoter activity using two different luciferase genes. Virus Genes 2001, 22, 231–242, doi:10.1023/A:1008183827072.
[16]  Fenoll, C.; Black, D.M.; Howell, S.H. The intergenic region of maize streak virus contains promoter elements involved in rightward transcription of the viral genome. EMBO J. 1988, 7, 1589–1596.
[17]  Dinant, S.; Ripoll, C.; Pieper, M.; David, C. Phloem specific expression driven by wheat dwarf geminivirus V-sense promoter in transgenic dicotyledonous species. Physiol. Plant. 2004, 121, 108–116, doi:10.1111/j.0031-9317.2004.00296.x.
[18]  Usharani, K.; Periasamy, M.; Malathi, V. Studies on the activity of a bidirectional promoter of Mungbean yellow mosaic India virus by agroinfiltration. Virus Res. 2006, 119, 154–162, doi:10.1016/j.virusres.2005.12.013.
[19]  Sunitha, S.; Mahajan, N.; Veluthambi, K. The TrAP/REn monodirectional promoter of Mungbean yellow mosaic geminivirus (MYMV) displays root-specific expression in transgenic tobacco. Plant Cell 2012, 109, 535–545.
[20]  Eagle, P.A.; Hanley-Bowdoin, L. cis Elements that contribute to geminivirus transcriptional regulation and the efficiency of DNA replication. J. Virol. 1997, 71, 6947–6955.
[21]  Argüello-Astorga, G.; Guevara-Gonzalez, R.; Herrera-Estrella, L.; Rivera-Bustamante, R. Geminivirus replication origins have a group-specific organization of iterative elements: A model for replication. Virology 1994, 203, 90–100, doi:10.1006/viro.1994.1458.
[22]  Eagle, P.A.; Orozco, B.M.; Hanley-Bowdoin, L. A DNA sequence required for geminivirus replication also mediates transcriptional regulation. Plant Cell 1994, 6, 1157–1170.
[23]  Amrao, L.; Amin, I.; Shahid, M.S.; Briddon, R.W.; Mansoor, S. Cotton leaf curl disease in resistant cotton is associated with a single begomovirus that lacks an intact transcriptional activator protein. Virus Res. 2010, 152, 153–163, doi:10.1016/j.virusres.2010.06.019.
[24]  Nawaz-ul-Rehman, M.S.; Briddon, R.W.; Fauquet, C.M. A melting pot of old world begomoviruses and their satellites infecting a collection of Gossypium species in Pakistan. PLoS One 2012, 7, e40050, doi:10.1371/journal.pone.0040050.
[25]  Ashraf, M.A.; Shahid, A.A.; Mohamed, B.B.; Dahab, A.A.; Bajwa, K.S.; Rao, A.Q.; Khan, M.A.U.; Ilyas, M.; Haider, M.S.; Husnain, T. Molecular characterization and phylogenetic analysis of a variant of highly infectious cotton leaf curl Burewala virus associated with CLCuD from Pakistan. Aust. J. Crop Sci. 2013, 7, 1113–1122.
[26]  Mullineaux, P.M.; Rigden, J.E.; Dry, I.B.; Krake, L.R.; Rezaian, M.A. Mapping of the polycistronic RNAs of tomato leaf curl geminivirus. Virology 1993, 193, 414–423, doi:10.1006/viro.1993.1138.
[27]  Dry, I.; Krake, L.; Mullineaux, P.; Rezaian, A. Regulation of tomato leaf curl viral gene expression in host tissues. Mol. Plant Microbe Interact. 2000, 13, 529–537, doi:10.1094/MPMI.2000.13.5.529.
[28]  Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115, doi:10.1093/nar/gks596.
[29]  Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; van de Peer, Y.; Rouzé, P.; Rombauts, S. Plantcare, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327, doi:10.1093/nar/30.1.325.
[30]  Higo, K.; Ugawa, Y.; Iwamoto, M.; Korenaga, T. Plant cis-acting regulatory DNA elements (place) database: 1999. Nucleic Acids Res. 1999, 27, 297–300, doi:10.1093/nar/27.1.297.
[31]  Wingender, E.; Dietze, P.; Karas, H.; Knüppel, R. Transfac: A database on transcription factors and their DNA binding sites. Nucleic Acids Res. 1996, 24, 238–241, doi:10.1093/nar/24.1.238.
[32]  Reese, M.G. Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput. Chem. 2001, 26, 51–56, doi:10.1016/S0097-8485(01)00099-7.
[33]  Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. Meme suite: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, W202–W208, doi:10.1093/nar/gkp335.
[34]  Portales-Casamar, E.; Thongjuea, S.; Kwon, A.T.; Arenillas, D.; Zhao, X.; Valen, E.; Yusuf, D.; Lenhard, B.; Wasserman, W.W.; Sandelin, A. Jaspar 2010: The greatly expanded open-access database of transcription factor binding profiles. Nucleic Acids Res. 2010, 38, D105–D110, doi:10.1093/nar/gkp950.
[35]  Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254, doi:10.1016/0003-2697(76)90527-3.
[36]  Fenoll, C.; Schwarz, J.J.; Black, D.M.; Schneider, M.; Howell, S.H. The intergenic region of maize streak virus contains a GC-rich element that activates rightward transcription and binds maize nuclear factors. Plant Mol. Biol. 1990, 15, 865–877, doi:10.1007/BF00039426.
[37]  Ruiz-Medrano, R.; Guevara-Gonzalez, R.; Argüello-Astorga, G.; Monsalve-Fonnegra, Z.; Herrera-Estrella, L.; Rivera-Bustamante, R. Identification of a sequence element involved in AC2-mediated transactivation of the pepper huasteco virus coat protein gene. Virology 1999, 253, 162–169, doi:10.1006/viro.1998.9484.
[38]  Schwarz, J.J.; Chakraborty, T.; Martin, J.; Zhou, J.; Olson, E.N. The basic region of myogenin cooperates with two transcription activation domains to induce muscle-specific transcription. Mol. Cell. Biol. 1992, 12, 266–275.
[39]  Yanagisawa, S.; Schmidt, R.J. Diversity and similarity among recognition sequences of Dof transcription factors. Plant J. 1999, 17, 209–214, doi:10.1046/j.1365-313X.1999.00363.x.
[40]  Ross, E.J.; Stone, J.M.; Elowsky, C.G.; Arredondo-Peter, R.; Klucas, R.V.; Sarath, G. Activation of the Oryza sativa non-symbiotic haemoglobin-2 promoter by the cytokinin-regulated transcription factor, arr1. J. Exp. Botany 2004, 55, 1721–1731, doi:10.1093/jxb/erh211.
[41]  Goda, H.; Sawa, S.; Asami, T.; Fujioka, S.; Shimada, Y.; Yoshida, S. Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol. 2004, 134, 1555–1573, doi:10.1104/pp.103.034736.
[42]  Maruyama‐Nakashita, A.; Nakamura, Y.; Watanabe‐Takahashi, A.; Inoue, E.; Yamaya, T.; Takahashi, H. Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots. Plant. J. 2005, 42, 305–314, doi:10.1111/j.1365-313X.2005.02363.x.
[43]  Xu, N.; Hagen, G.; Guilfoyle, T. Multiple auxin response modules in the soybean SAUR 15A promoter. Plant Sci. 1997, 126, 193–201, doi:10.1016/S0168-9452(97)00110-6.
[44]  Gowik, U.; Burscheidt, J.; Akyildiz, M.; Schlue, U.; Koczor, M.; Streubel, M.; Westhoff, P. cis-Regulatory elements for mesophyll-specific gene expression in the C4 plant Flaveria trinervia, the promoter of the C4 phosphoenolpyruvate carboxylase gene. Plant Cell 2004, 16, 1077–1090, doi:10.1105/tpc.019729.
[45]  Filichkin, S.A.; Leonard, J.M.; Monteros, A.; Liu, P.-P.; Nonogaki, H. A novel endo-β-mannanase gene in tomato LeMAN5 is associated with anther and pollen development. Plant Physiol. 2004, 134, 1080–1087, doi:10.1104/pp.103.035998.
[46]  Elmayan, T.; Tepfer, M. Evaluation in tobacco of the organ specificity and strength of therold promoter, domain a of the 35S promoter and the 35S2 promoter. Transgenic Res. 1995, 4, 388–396, doi:10.1007/BF01973757.
[47]  Stougaard, J.; J?rgensen, J.-E.; Christensen, T.; Kühle, A.; Marcker, K.A. Interdependence and nodule specificity of cis-acting regulatory elements in the soybean leghemoglobin lbc 3 and N23 gene promoters. Mol. Gen. Genet. 1990, 220, 353–360, doi:10.1007/BF00391738.
[48]  Akbar, F.; Briddon, R.W.; Vazquez, F.; Saeed, M. Transcript mapping of cotton leaf curl burewala virus and its cognate betasatellite, cotton leaf curl multan betasatellite. Virol. J. 2012, 9, doi:10.1186/1743-422X-9-249.
[49]  Tjaden, G.; Edwards, J.W.; Coruzzi, G.M. cis Elements and trans-acting factors affecting regulation of a nonphotosynthetic light-regulated gene for chloroplast glutamine synthetase. Plant Physiol. 1995, 108, 1109–1117.
[50]  Joshi, C.P. Putative polyadenylation signals in nuclear genes of higher plants: A compilation and analysis. Nucleic Acids Res. 1987, 15, 9627–9640, doi:10.1093/nar/15.23.9627.
[51]  O’Neill, S.D.; Kumagai, M.H.; Majumdar, A.; Huang, N.; Sutliff, T.D.; Rodriguez, R.L. The α-amylase genes in Oryza sativa: Characterization of cDNA clones and mRNA expression during seed germination. Mol. Gen. Genet. 1990, 221, 235–244.
[52]  Abe, H.; Urao, T.; Ito, T.; Seki, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 2003, 15, 63–78, doi:10.1105/tpc.006130.
[53]  Hartmann, U.; Sagasser, M.; Mehrtens, F.; Stracke, R.; Weisshaar, B. Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and bHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol. Biol. 2005, 57, 155–171, doi:10.1007/s11103-004-6910-0.
[54]  Eulgem, T.; Rushton, P.J.; Schmelzer, E.; Hahlbrock, K.; Somssich, I.E. Early nuclear events in plant defence signalling: Rapid gene activation by WRKY transcription factors. EMBO J. 1999, 18, 4689–4699, doi:10.1093/emboj/18.17.4689.
[55]  Zhang, Z.-L.; Xie, Z.; Zou, X.; Casaretto, J.; Ho, T.-h.D.; Shen, Q.J. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol. 2004, 134, 1500–1513, doi:10.1104/pp.103.034967.
[56]  Bovy, A.; van den Berg, C.; de Vrieze, G.; Thompson, W.F.; Weisbeek, P.; Smeekens, S. Light-regulated expression of the Arabidopsis thaliana ferredoxin gene requires sequences upstream and downstream of the transcription initiation site. Plant Mol. Biol. 1995, 27, 27–39, doi:10.1007/BF00019176.
[57]  Simpson, S.D.; Nakashima, K.; Narusaka, Y.; Seki, M.; Shinozaki, K.; Yamaguchi‐Shinozaki, K. Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J. 2003, 33, 259–270, doi:10.1046/j.1365-313X.2003.01624.x.
[58]  Urao, T.; Yamaguchi-Shinozaki, K.; Urao, S.; Shinozaki, K. An Arabidopsis MYB homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 1993, 5, 1529–1539.
[59]  Park, H.C.; Kim, M.L.; Kang, Y.H.; Jeon, J.M.; Yoo, J.H.; Kim, M.C.; Park, C.Y.; Jeong, J.C.; Moon, B.C.; Lee, J.H.; et al. Pathogen- and NACL-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol. 2004, 135, 2150–2161, doi:10.1104/pp.104.041442.
[60]  Goding, C.; Temperley, S.; Fisher, F. Multiple transcription (actors interact with the adenovirus-2 EII-late promoter: Evidence for a novel CCAAT recognition factor. Nucleic Acids Res. 1987, 15, 7761–7780, doi:10.1093/nar/15.19.7761.
[61]  Koikeda, S.; Ibuki, R.; Sawada, Y.; Nagata, K.; Shibata, H.; Masamune, Y.; Nakanishi, Y. Nuclear factor I stimulates transcription of the adenovirus 12 E1A gene in a cell-free system. Biochim. Biophys. Acta 1990, 1048, 85–92, doi:10.1016/0167-4781(90)90026-X.
[62]  Bovolenta, C.; Tognon, M.; Liboi, E. Epidermal growth factor induces, in the EL alpha 4–2 cell line, herpes simplex virus-1 alpha 4 gene transcription in the absence of the viral trans-activator VP16. Virus Res. 1991, 19, 199–208, doi:10.1016/0168-1702(91)90046-X.
[63]  Dorn, A.; Bollekens, J.; Staub, A.; Benoist, C.; Mathis, D. A multiplicity of CCAAT box-binding proteins. Cell 1987, 50, 863–872, doi:10.1016/0092-8674(87)90513-7.
[64]  Cowie, A.; Kamen, R. Multiple binding sites for polyomavirus large T antigen within regulatory sequences of polyomavirus DNA. J. Virol. 1984, 52, 750–760.
[65]  Kapila, J.; de Rycke, R.; van Montagu, M.; Angenon, G. An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci. 1997, 122, 101–108, doi:10.1016/S0168-9452(96)04541-4.
[66]  Leckie, B.M.; Neal Stewart, C., Jr. Agroinfiltration as a technique for rapid assays for evaluating candidate insect resistance transgenes in plants. Plant Cell Rep. 2011, 30, 325–334, doi:10.1007/s00299-010-0961-2.
[67]  Li, J.F.; Nebenfuhr, A. FAST technique for Agrobacterium-mediated transient gene expression in seedlings of Arabidopsis and other plant species. Cold Spring Harb. Protoc. 2010, 2010, doi:10.1101/pdb.prot5428.
[68]  Zheng, L.; Liu, G.; Meng, X.; Li, Y.; Wang, Y. A versatile Agrobacterium-mediated transient gene expression system for herbaceous plants and trees. Biochem. Genet. 2012, 50, 761–769, doi:10.1007/s10528-012-9518-0.
[69]  Baulcombe, D.C. Gene silencing: RNA makes RNA makes no protein. Curr. Biol. 1999, 9, R599–R601, doi:10.1016/S0960-9822(99)80383-2.
[70]  Bhaskar, P.B.; Venkateshwaran, M.; Wu, L.; Ane, J.M.; Jiang, J. Agrobacterium-mediated transient gene expression and silencing: A rapid tool for functional gene assay in potato. PLoS One 2009, 4, e5812.
[71]  Scofield, S.R.; Tobias, C.M.; Rathjen, J.P.; Chang, J.H.; Lavelle, D.T.; Michelmore, R.W.; Staskawicz, B.J. Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science 1996, 274, 2063–2065, doi:10.1126/science.274.5295.2063.
[72]  Frederick, R.D.; Thilmony, R.L.; Sessa, G.; Martin, G.B. Recognition specificity for the bacterial avirulence protein AvrPto is determined by Thr-204 in the activation loop of the tomato Pto kinase. Mol. Cell 1998, 2, 241–245, doi:10.1016/S1097-2765(00)80134-3.
[73]  Tsuda, K.; Qi, Y.; Nguyen le, V.; Bethke, G.; Tsuda, Y.; Glazebrook, J.; Katagiri, F. An efficient Agrobacterium-mediated transient transformation of Arabidopsis. Plant J. 2012, 69, 713–719, doi:10.1111/j.1365-313X.2011.04819.x.
[74]  Yang, Y.; Li, R.; Qi, M. In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J. 2000, 22, 543–551, doi:10.1046/j.1365-313x.2000.00760.x.
[75]  Zahur, M.; Maqbool, A.; Irfan, M.; Barozai, M.Y.K.; Rashid, B.; Riazuddin, S.; Husnain, T. Isolation and functional analysis of cotton universal stress protein promoter in response to phytohormones and abiotic stresses. Mol. Biol. 2009, 43, 578–585, doi:10.1134/S0026893309040086.
[76]  Zahur, M.; Maqbool, A.; Irfan, M.; Barozai, M.Y.K.; Qaiser, U.; Rashid, B.; Husnain, T.; Riazuddin, S. Functional analysis of cotton small heat shock protein promoter region in response to abiotic stresses in tobacco using Agrobacterium-mediated transient assay. Mol. Biol. Rep. 2009, 36, 1915–1921, doi:10.1007/s11033-008-9399-9.
[77]  Sunter, G.; Hartitz, M.D.; Hormuzdi, S.G.; Brough, C.L.; Bisaro, D.M. Genetic analysis of tomato golden mosaic virus: ORF AL2 is required for coat protein accumulation while ORF AL3 is necessary for efficient DNA replication. Virology 1990, 179, 69–77, doi:10.1016/0042-6822(90)90275-V.
[78]  Hong, Y.; Saunders, K.; Hartley, M.R.; Stanley, J. Resistance to geminivirus infection by virus-induced expression of dianthin in transgenic plants. Virology 1996, 220, 119–127, doi:10.1006/viro.1996.0292.
[79]  Hofer, J.; Dekker, E.L.; Reynolds, H.V.; Woolston, C.J.; Cox, B.S.; Mullineaux, P.M. Coordinate regulation of replication and virion sense gene expression in wheat dwarf virus. Plant Cell 1992, 4, 213–223.
[80]  Shivaprasad, P.; Akbergenov, R.; Trinks, D.; Rajeswaran, R.; Veluthambi, K.; Hohn, T.; Pooggin, M.M. Promoters, transcripts, and regulatory proteins of Mungbean yellow mosaic geminiviru. J. Virol. 2005, 79, 8149–8163, doi:10.1128/JVI.79.13.8149-8163.2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133