全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Viruses  2014 

Historical Perspective, Development and Applications of Next-Generation Sequencing in Plant Virology

DOI: 10.3390/v6010106

Keywords: next-generation (deep) sequencing, NGS, novel virus/viroid discovery, metagenomics, virome, transcriptome, DNA sequencing, RNA sequencing (RNA-seq.)

Full-Text   Cite this paper   Add to My Lib

Abstract:

Next-generation high throughput sequencing technologies became available at the onset of the 21st century. They provide a highly efficient, rapid, and low cost DNA sequencing platform beyond the reach of the standard and traditional DNA sequencing technologies developed in the late 1970s. They are continually improved to become faster, more efficient and cheaper. They have been used in many fields of biology since 2004. In 2009, next-generation sequencing (NGS) technologies began to be applied to several areas of plant virology including virus/viroid genome sequencing, discovery and detection, ecology and epidemiology, replication and transcription. Identification and characterization of known and unknown viruses and/or viroids in infected plants are currently among the most successful applications of these technologies. It is expected that NGS will play very significant roles in many research and non-research areas of plant virology.

References

[1]  Watson, J.; Crick, F.H.C. A structure for deoxyribose nucleic acid. Nature 1953, 171, 737–738, doi:10.1038/171737a0.
[2]  Holley, R.W.; Madison, J.T.; Zamir, A. A new method for sequence determination of large oligonucleotides. Biochem. Biophys. Res. Commun. 1964, 17, 389–394, doi:10.1016/0006-291X(64)90017-8.
[3]  Holley, R.W.; Apgar, J.; Everett, G.A.; Madison, J.T.; Marquisee, M.; Merrill, S.H.; Penswick, J.R.; Zamir, A. Structure of a ribonucleic acid. Science 1965, 147, 1462–1465.
[4]  Sanger, F.; Air, G.M.; Barrell, B.G.; Brown, N.L.; Coulson, A.R.; Fiddes, J.C.; Hutchison, C.A.; Smith, M. Nucleotide sequence of bacteriophage phX174DNA. Nature 1977, 265, 687–695, doi:10.1038/265687a0.
[5]  Sanger, F.; Nicklen, S.; Coulsen, A.R. DNA sequencing with chain-terminator inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467, doi:10.1073/pnas.74.12.5463.
[6]  Maxam, A.M.; Gilbert, W.A. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 1977, 74, 560–564, doi:10.1073/pnas.74.2.560.
[7]  Jackson, D.; Symons, R.H.; Berg, P. Biochemical method for inserting new genetic information into DNA of Simian virus 40: Circular SV40 DNA molecules containing Lambda phage genes and the galactose operon of Escherichia coli. Proc. Natl. Acad. Sci. USA 1972, 69, 2904–2909, doi:10.1073/pnas.69.10.2904.
[8]  Gilbert, W.; Maxam, A. The nucleotide sequence of the lac operator. Proc. Natl. Acad. Sci. USA 1973, 70, 3581–3584, doi:10.1073/pnas.70.12.3581.
[9]  Baer, R.; Bankier, A.T.; Biggin, M.D.; Deininger, P.L.; Farrell, P.J.; Gibson, T.J.; Hatfull, G.; Hudson, G.S.; Satchwell, S.C.; Seguin, C.; et al. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 1984, 310, 207–211, doi:10.1038/310207a0.
[10]  Fleischmann, R.D.; Adams, M.D.; White, O.; Clayton, R.A.; Kirkness, E.; Kerlavage, A.R.; Bult, C.J. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 1995, 269, 496–512.
[11]  Ronaghi, M.; Karamohame’d, S.; Pettersson, B.; Uhlén, M.; Nyrén, P. Real-time DNA sequencing using detection of pyrophosphate release. Anal. Biochem. 1996, 242, 84–89, doi:10.1006/abio.1996.0432.
[12]  Kawashima, E.; Farinelli, L.; Mayer, P. Method of Nucleic Acid Amplification. Int. Appl. No. PCT/GB98/00961, 8 October 1998.
[13]  Ewing, B.; Green, P. Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genomic Res. 1998, 8, 186–194.
[14]  Life Sciences, a Roche Company. Available online: http://www.454.com/ (accessed on 22 October 2012).
[15]  Illumina (Illumina). Available online: http://www.illumina.com/technology/sequencing_technology/ilmn/ (accessed on 22 October 2012).
[16]  SOLiD (Life Technologies). Available online: http://www.lifetechnologies.com/us/en/home/life-science/sequencing/next-generation-sequencing/solid-next-generation-sequencing.html/ (accessed on 24 October 2012).
[17]  Ion-Torrent (Life Technologies). Available online: http://www.lifetechnologies.com/us/en/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-orkflow/ion-torrent-next-generation-sequencing-run-sequence.html/ (accessed on 25 October 2012).
[18]  PacBio (Pacific Bioscience). Available online: http://www.pacificbiosciences.com/ (accessed on 3 November 2012).
[19]  Nanopore (Oxford Technologies). Available online: https://www.nanoporetech.com/ (accessed on 5 November 2012).
[20]  Loman, N.J.; Misra, R.V.; Dallman, T.J.; Constantinidou, C.; Gharbia, S.E.; Wain, J.; Pallen, M.J. Performance comparison of benchtop high-throughput sequencing platforms. Nat. Biotechnol. 2012, 30, 434–439, doi:10.1038/nbt.2198.
[21]  Radford, A.D.; Chapman, D.; Dixon, L.; Chantrey, J.; Darby, A.C.; Hall, N. Application of next-generation sequencing technologies in virology. J. Gen. Virol. 2012, 93, 1853–1868, doi:10.1099/vir.0.043182-0.
[22]  Liu, L.; Li, Y.; Li, S.; Hu, N.; He, Y.; Pong, R.; Lin, D.; Lu, L.; Law, M. Comparison of next-generation sequencing systems. J. Biomed. Biotechnol. 2012, 2012, doi:10.1155/2012/251364.
[23]  Archer, J.; Baillie, G.; Watson, S.J.; Kellam, P.; Rambaul, A.; Robertson, D.L. Analysis of high-depth sequence data for studying viral diversity: A comparison of next generation sequencing platforms using Segminator II. BMC Bioinform. 2012, 13, doi:10.1186/1471-2105-13-47.
[24]  Kirsher, M.; Kelso, J. High-throughput DNA sequencing-concepts and limitations. Bioassays 2010, 32, 524–536, doi:10.1002/bies.200900181.
[25]  Carniero, M.O.; Russ, C.; Ross, M.G.; Gabriel, S.B.; Nasbaum, C.; DePristo, M.A. Pacific biosciences sequencing technology for genotyping and variation discovery in human data. BMC Genomics 2012, 13, doi:10.1186/1471-2164-13-375.
[26]  Bragg, L.M.; Stone, G.; Butler, M.K.; Hugenholtz, P.; Tyson, G.W. Shining a light on dark sequencing: Characterising errors in Ion Torrent PGM data. PLoS Comput. Biol. 2013, 9, e1003031, doi:10.1371/journal.pcbi.1003031.
[27]  Kreuze, J.F.; Perez, A.; Untiveros, M.; Quispe, D.; Fuentes, S.; Barker, I.; Simon, R. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: A generic method for diagnosis, discovery and sequencing of viruses. Virology 2009, 388, 1–7, doi:10.1016/j.virol.2009.03.024.
[28]  Adams, I.P.; Glover, R.H.; Monger, W.A.; Mumford, R.; Jackeviciene, E.; Navalinskiene, M.; Samuitiene, M.; Boonham, N. Next-generation sequencing and metagenomic analysis: A universal diagnostic tool in plant virology. Mol. Plant. Pathol. 2009, 10, 537–545, doi:10.1111/j.1364-3703.2009.00545.x.
[29]  Qi, X.; Bao, F.S.; Xie, Z. Small RNA deep sequencing reveals role Arabidopsis thaliana for RNA-dependent RNA polymerases in viral siRNA biogenesis. PLoS One 2009, 4, e4971.
[30]  Donaire, L.; Wang, Y.; Gonzales-Ibeas, D.; Mayer, K.F.; Aranda, M.A.; Liave, C. Deep sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology 2009, 392, 203–214, doi:10.1016/j.virol.2009.07.005.
[31]  Monger, W.A.; Alicai, T.; Ndunguru, J.; Kinyua, Z.M.; Potts, M.; Reeder, R.H.; Miano, D.W.; Adams, I.P.; Boonham, N.; Glover, R.H.; et al. The complete genome sequence of the Tanzanian strain of Cassava brown streak virus and comparison with the Ugandan strain sequence. Arch. Virol. 2010, 155, 429–433, doi:10.1007/s00705-009-0581-8.
[32]  Szittya, G.; Moxon, S.; Pantaleo, V.; Toth, G.; Rusholme, P.R.L.; Moulton, V.; Burgyan, J.; Dalmay, T. Structural and functional analysis of viral siRNAs. PLoS Pathog. 2010, 6, e1000838, doi:10.1371/journal.ppat.1000838.
[33]  Roossinck, M.J.; Saha, P.; Wiley, G.B.; Quan, J.; White, J.D.; Lai, H.; Chavarria, F.; Shen, G.; Roe, B.A. Ecogenomics: Using massively parallel pyrosequencing to understand virus ecology. Mol. Ecol. 2010, 19, 81–88, doi:10.1111/j.1365-294X.2009.04470.x.
[34]  Pallett, D.W.; Ho, T.; Cooper, I.; Wang, H. Detection of Cereal yellow dwarf virus using small interfering RNAs and enhanced infection rate with Cocksfoot streak virus in wild cocksfoot grass (Dactylis glomerata). J. Virol. Methods 2010, 168, 223–227, doi:10.1016/j.jviromet.2010.06.003.
[35]  Lin, K.-Y.; Cheng, C.-P.; Chang, B.C.-H.; Wang, W.-C.; Huang, Y.-W.; Lee, Y.-S.; Huang, H.-D.; Hsu, Y.-H.; Lin, N.-S. Global analysis of small interfering RNAs derived from Bamboo mosaic virus and its associated satellite RNAs in different plants. PLoS One 2010, 5, e11928, doi:10.1371/journal.pone.0011928.
[36]  Yan, F.; Zhang, H.; Adams, M.; Yang, J.; Peng, J.; Antoniw, J.; Zhou, Y.; Chen, J. Characterization of siRNAs derived from rice stripe virus in infected rice plants by deep Sequencing. Arch. Virol. 2010, 155, 935–940, doi:10.1007/s00705-010-0670-8.
[37]  Silva, T.F.; Romanel, E.A.C.; Andrade, R.R.S.; Farinelli, L.; Osteras, M.; Deluen, C.; Correa, R.L.; Schrago, C.E.G.; Vaslin, M.F.S. Profile of small interfering RNAa from cotton plants infected with the polerovirus Cotton leafroll dwarf virus. BMC Mol. Biol. 2011, 12, doi:10.1186/1471-2199-12-40.
[38]  Wylie, S.J.; Jones, M.G.K. The complete genome sequence of a Passion fruit woodiness virus isolate from Australia determined using deep sequencing, and its relationship to other potyviruses. Arch. Virol. 2011, 156, 479–482, doi:10.1007/s00705-010-0845-3.
[39]  Dombrovsky, A.; Glanz, E.; Sapkota, R.; Lachman, O.; Bronstein, M.; schnitzer, T.; Antignus, Y. Next-generation sequencing a rapid and reliable method to obtain sequence data of the genomes of undescribed plant viruses. In Proceedings of the BARD-Sponsored Workshop—Microarrays and Next-Generation Sequencing for Detection and Identification of Plant Viruses, Beltsville, MD, USA, 17–19 November 2011. Abstract No. 24.
[40]  Mumford, R.; Adams, I.P.; Glover, R.; Hany, U.; Boonham, N. From high throughput to high output clondiag microarrays and 454 sequence for viral detection and discovery. In Proceedings of the ARD-Sponsored Workshop—Microarrays and Next-Generation Sequencing for Detection and Identification of Plant Viruses, Beltsville, MD, USA, 17–19 November 2011. Abstract No. 17.
[41]  Hagen, C.; Frizzi, A.; Kao, J.; Jia, L.; Huang, M.; Zhang, Y.; Huang, S. Using small RNA sequences to diagnose, sequence, and investigate the infectivity characteristics of vegetable-infecting viruses. Arch. Virol. 2011, 156, 1209–1216, doi:10.1007/s00705-011-0979-y.
[42]  Hu, Q.; Hollunder, J.; Niehl, A.; Korner, C.J.; Gereige, D.; Windels, D.; Arnold, A.; Kuiper, M.; Vasquez, F.F.; Pooggin, M.; et al. Specific impact of Tobamavirus infection on the Arabidopsis small RNA profile. PLoS One 2011, 6, e19549, doi:10.1371/journal.pone.0019549.
[43]  Yang, X.; Wang, Y.; Guo, W.; Xie, Y.; Xie, Q.; Fan, L.; Zhou, X. Characterization of small interfering RNAs derived from the geminivirus/betasatellite complex using deep sequencing. PLoS One 2011, 6, e16928.
[44]  Li, R.; Gao, S.; Hernandez, A.G.; Wechter, W.P.; Fei, Z.; Ling, K.-S. Deep sequencing of small RNAs in tomato for virus and viroid identification and strain differentiation. PLoS One 2012, 7, e37127.
[45]  Lu, J.; Du, Z.-X.; Kong, J.; Chen, L.-N.; Qiu, Y.-H.; Li, G.-F.; Meng, X.-H.; Zhu, S.-F. Transcriptome analysis of Nicotiana tabacum infected by Cucumber mosaic virus during systemic symptom development. PLoS One 2012, 7, e43447.
[46]  Adams, I.P.; Miano, D.W.; Kinyua, Z.M.; Wangai, A.; Kimani, E.; Phiri, N.; Reeder, R.; Harju, V.; Glover, R.; Hany, U.; et al. Use of next generation sequencing for the identification and characterization of Maize chlorotic mottle virus and Sugarcane mosaic virus causing lethal necrosis in Kenya. Plant Pathol. 2012, doi:10.1111/j.1365-3059.2012.02690x.
[47]  Wylie, S.J.; Luo, H.; Li, H.; Jones, M.G.K. Multiple polyadenylated RNA viruses detected in pooled cultivated and wild plant samples. Arch. Virol. 2012, 157, 271–284, doi:10.1007/s00705-011-1166-x.
[48]  Xu, Y.; Huang, L.; Fu, S.; Wu, J.; Zhou, X. Population diversity of Rice stripe virus—Derived siRNAs in three different hosts and RNAi-based antiviral immunity in Laodelphgax striatellus. PLoS One 2012, 7, e46238.
[49]  Kashif, M.; Pietila, S.; Artola, K.; Tugume, A.K.; Makinen, V.; Valkonen, J.P.T. Detection of viruses in sweetpotato from Honduras and Guatemala augmented by deep-sequencing of small-RNAs. Plant Dis. 2012, 96, 1430–1437, doi:10.1094/PDIS-03-12-0268-RE.
[50]  Fabre, F.; Montarry, J.; Coville, J.; Senoussi, R.; Simon, V.; Murry, B. Modelling the evolutionary dynamics of viruses within their hosts: A case study using high-throughput sequencing. PLoS Pathog. 2012, 8, e1002654.
[51]  Blevins, T.; Rajeswaran, R.; Aregger, M.; Borah, B.K.; Schepetilnikov, M.; Baerlocher, L.; Farinelli, L.; Meins, F., Jr.; Hohn, T.; Pooggin, M.M. Massive production of small RNAs from a non-coding region of Cauliflower mosaic virus in plant defense and viral counter-defense. Nucleic Acids Res. 2011, 39, 5003–5014, doi:10.1093/nar/gkr119.
[52]  Rajeswaran, R.; Aregger, M.; Zvereva, A.S.; Borah, B.K.; Gubaeva, E.G.; Pooggin, M.M. Sequencing of RDR6-dependent double-stranded RNAs reveals novel features of plant siRNA biogenesis. Nucleic Acids Res. 2012, 40, 6241–6254, doi:10.1093/nar/gks242.
[53]  Aregger, M.; Borah, B.K.; Seguin, J.; Rajeswaran, R.; Gubaeva, E.G.; Zvereva, A.S.; Windels, D.; Vazquez, D.; Blevins, T.; Farinelli, L.; et al. Primary and secondary siRNAs in Geminivirus-induced gene silencing. PLoS Pathog. 2012, 8, e1002941, doi:10.1371/journal.ppat.1002941.
[54]  Hany, U.; Adams, I.P.; Glover, R.; Bhat, A.I.; Boonham, N. The complete nucleotide sequence of Piper yellow mottle virus (PYMoV). Arch. Virol. 2013, 158, doi:10.1007/s00705-013-1824-2.
[55]  Quito-Avila, D.F.; Jelkmann, W.; Tzanetakis, I.; Keller, K.; Martin, R.R. Complete sequence and genetic characterization of Raspberry latent virus, a novel member of the family Reoviridae. Virus Res. 2011, 155, 397–405, doi:10.1016/j.virusres.2010.11.008.
[56]  Ruiz-Ruiz, S.; Navarro, B.; Gisel, A.; Pena, L.; Navarro, L.; Moreno, P.; di Serio, F.; Flores, R. Citrus tristeza virus infection induces the accumulation of viral small RNAs (21–24 nt) mapping preferentially at the terminal region 3'- of the genomic RNA and affects the host small RNA profile. Plant Mol. Biol. 2011, 75, 607–619, doi:10.1007/s11103-011-9754-4.
[57]  Loconsole, G.; Onelge, N.; Potere, O.; Giampetruzzi, A.; Bozan, O.; Satar, S.; de Stradis, A.; Savino, V.; Yokomi, R.K.; Saponari, M. Identification and characterization of Citrus Yellow vein clearing virus, a putative new member of the genus Mandarivirus. Phytopathology 2012, 102, 1168–1175, doi:10.1094/PHYTO-06-12-0140-R.
[58]  Loconsole, G.; Saldarelli, P.; Doddapaneni, H.; Savino, V.; Martelli, G.P.; Saponari, M. Identification of a single-stranded DNA virus associated with citrus chlorotic dwarf disease, a new member of the family Geminiviridae. Virology 2012, 432, 162–172, doi:10.1016/j.virol.2012.06.005.
[59]  Maree, H.J.; Nel, Y.; Visser, M.; Coetzec, B.; Manicom, B.; Burger, J.T.; Rees, D.J.G. The study of plant virus disease etiology using next-generation sequencing technologies. In Proceedings of the 22nd International Conference on Virus and Other Transmissible Diseases of Fruit Crops, Rome, Italy, 3–8 June 2012. Abstract No. 48.
[60]  Yoshikawa, N.; Yamagishi, N.; Yaegashi, H.; Ito, T. Deep sequence analysis of viral small RNAs from a green crinkle-diseased apple tree. Petria 2012, 22, 292–297.
[61]  Candresse, T.; Marais, A.; Faure, C.; Carriere, S.; Gentit, P. Use of 454 pyrosequencing for the fast and efficient characterization of known or novel viral agents in Prunus materials. In Proceedings of the 22nd International Conference on Virus and Other Transmissible Diseases of Fruit Crops, Rome, Italy, 3–8 June 2012. Abstract No. 47.
[62]  Chiumenti, M.; Roberto, R.; Bottalico, G.; Campanale, A.; de Stradis, A.; Minafra, A.; Boscia, D.; Savino, V.; Martelli, G.P. Virus sanitation and deep sequence analysis of fig. In Proceedings of the 22nd International Conference on Virus and Other Transmissible Diseases of Fruit Crops, Rome, Italy, 3–8 June 2012. Abstract No. 163.
[63]  Thekke-Veetil, T.; Sabanadzovic, S.; Keller, K.E.; Martin, R.R.; Tzanetakis, I.E. Genome organization and sequence diversity of a novel blackberry Ampelovirus. In Proceedings of the 22nd International Conference on Virus and Other Transmissible Diseases of Fruit Crops, Rome, Italy, 3–8 June 2012. Abstract No. 191.
[64]  Candresse, T.; Marais, A.; Faure, C.; Gentit, P. Association of Little cherry virus 1 (LChV1) with the Shirofugen stunt disease and characterization of the genome of a divergent LChV1 isolate. Phytopathology 2013, 103, 293–308, doi:10.1094/PHYTO-10-12-0275-R.
[65]  Roy, A.; Choudhary, N.; Guillermo, L.M.; Shao, J.; Govindarajulu, A.; Achor, D.; Wei, G.; Picton, D.D.; Levy, L.; Nakhla, M.K.; et al. A novel virus of the Genus Cilevirus causing symptoms similar to citrus leprosis. Phytopathology 2013, 103, 488–500, doi:10.1094/PHYTO-07-12-0177-R.
[66]  Vives, M.C.; Velazquez, K.; Pina, J.A.; Moreno, P.; Guerri, J.; Navarro, L. Identification of a new enamovirus associated with citrus vein enation disease by deep sequencing of small RNAs. Phytopathology 2013, 103, 1077–1086, doi:10.1094/PHYTO-03-13-0068-R.
[67]  Al Rwahnih, M.; Daubert, S.; Golino, D.; Rowhani, A. Deep sequencing analysis of RNAs from a grapevine showing Syrah decline symptoms reveals a multiple virus infection that includes a novel virus. Virology 2009, 387, 395–401, doi:10.1016/j.virol.2009.02.028.
[68]  Coetzee, B.; Freeborough, M.J.; Maree, H.J.; Celton, J.M.; Rees, D.J.; Burger, J.T. Deep sequencing analysis of viruses infecting grapevines: Virome of a vineyard. Virology 2010, 400, 157–163, doi:10.1016/j.virol.2010.01.023.
[69]  Pantaleo, V.; Saldarelli, P.; Miozzi, L.; Giampetruzzi, A.; Gisel, A.; Moxon, S.; Dalmay, T.; Bisztray, G.; Burgyan, J. Deep sequencing analysis of viral short RNAs from an infected Pinot noir grapevine. Virology 2010, 408, 49–56, doi:10.1016/j.virol.2010.09.001.
[70]  Zhang, Y.; Singh, K.; Kaur, R.; Qiu, W. Association of a novel DNA virus with the grapevine vein-clearing and decline syndrome. Phytopathology 2011, 101, 1081–1090, doi:10.1094/PHYTO-02-11-0034.
[71]  Al Rwahnih, M.; Daubert, S.; U'rbez-Torres, J.R.; Cordero, F.; Rowhani, A. Deep sequencing evidence from single grapevine plants reveals a virome dominated by mycoviruses. Arch. Virol. 2011, 156, 397–403, doi:10.1007/s00705-010-0869-8.
[72]  Giampetruzzi, A.; Roumi, V.; Roberto, R.; Malossini, U.; Yoshikawa, N.; la Notte, P.; Terlizzi, F.; Credi, R.; Saldarelli, P. A new grapevine virus discovered by deep sequencing of virus- and viroid-derived small small RNAs in Cv Pinot gris. Virus Res. 2012, 163, 262–268, doi:10.1016/j.virusres.2011.10.010.
[73]  Al Rwahnih, M.; Dave, A.; Anderson, M.; Uyemoto, J.K.; Sudarshana, M.R. Association of a circular DNA virus in grapevine affected by red blotch disease in California. In Proceedings of the 17th Congress of ICVG, Davis, CA, USA, 7–14 October 2012.
[74]  Al Rwahnih, M.; Sudarshana, M.R.; Uyemoto, J.K.; Rowhani, A. Complete genome sequence of a novel Vitivirus isolated from grapevine. In Proceedings of the 17th Congress of ICVG, Davis, CA, USA, 7–14 October 2012.
[75]  Alabi, O.J.; Zheng, Y.; Jagadeeswaran, G.; Sunkar, R.; Naidu, R. High-throughput sequence analysis of small RNAs in grapevine (Vitis. vinifera L.) affected by grapevine leafroll disease. In Proceedings of the 17th Congress of ICVG, Davis, CA, USA, 7–14 October 2012.
[76]  Poojari, S.; Alabi, O.J.; Fofanov, V.Y.; Naidu, R.A. A leafhopper-transmissible DNA virus with novel evolutionary lineage in the family Geminiviridae implicated in grapevine redleaf disease by next-Generation sequencing. PLoS One 2013, 8, e64194.
[77]  Navarro, B.; Pantaleo, V.; Gisel, A.; Moxon, S.; Dalmay, T.; Bistray, G.; di Serio, F.; Burgyan, J. Deep sequencing of viroid-derived small RNAs from grapevine provides new insight on the role of RNA silencing in plant-viroid interaction. PLoS One 2009, 4, e7686.
[78]  Di Serio, F.; Gisel, A.; Navarro, B.; Delgado, S.; Martínez de Alba, A.-E.; Donvito, G.; Flores, R. Deep sequencing of the small RNAs derived from two symptomatic variants of a chloroplastic viroid: Implications, for their genesis and for pathogenesis. PLoS One 2009, 4, e7539.
[79]  Di Serio, F.; Martínez de Alba, A.-E.; Navarro, B.A.; Gisel, A.; Flores, R. RNA-dependent RNA polymerase 6 delays accumulation and precludes meristem invasion of a viroid that replicates in the nucleus. J. Virol. 2010, 84, 2477–2489, doi:10.1128/JVI.02336-09.
[80]  Martinez, G.; Donaire, L.; Llave, C.; Pallas, V.; Gomez, G. High-throughput sequencing of Hop stunt viroid-derived small RNAs from cucumber leaves and phloem. Mol. Plant Pathol. 2010, 11, 347–359, doi:10.1111/j.1364-3703.2009.00608.x.
[81]  Chiumenti, M.; Giampetruzzi, A.; Pirolo, C.; Morelli, M.; Saldarelli, P.; Minafra, A.; Bottalico, G.; la Notte, P.; Campanale, A.; Savino, V.; et al. Approaxhes of next generation sequencing to investigate grapevine diseases of unknown etiology. In Proceedings of the 17th Congress of ICVG, Davis, CA, USA, 7–14 October 2012.
[82]  Wu, Q.; Wang, Y.; Cao, M.; Pantaleo, V.; Burgyan, J.; Li, W.X.; Ding, S.W. Homology-independent discovery of replicating pathogenic circular RNAs by Deep sequencing and a new computational algorithm. Proc. Natl. Acad. Sci. USA 2012, 109, 3938–3943, doi:10.1073/pnas.1117815109.
[83]  Duan, Y.; Zhou, L.; Hall, D.G.; Li, W.; Doddapaneni, H.; Lin, H.; Liu, L.; Vahling, C.M.; Gabriel, D.W.; Williams, K.P.; et al. Complete genome sequence of citrus huanglongbing bacterium, “Candidatus Liberibacter asiaticus” obtaine through metagenomics. Mol. Plant MicrobeInteract. 2009, 22, 1011–1020, doi:10.1094/MPMI-22-8-1011.
[84]  Ng, T.F.F.; Duffy, S.; Polston, J.E.; Bixby, E.; Vallad, G.E.; Breitbart, M. Exploring the diversity of plant DNA viruses and their satellites using vector-enabled metagenomics on whiteflies. PLoS One 2011, 6, e19050.
[85]  Contaldo, N.; Canel, A.; Paltrinieri, S.; Bertaccini, A.; Nicolaisen, M. Phytoplasma detection and identification in grapevine by deep amplicon sequencing. In Proceedings of the 17th Congress of ICVG, Davis, CA, USA, 7–14 October 2012.
[86]  Nicolaisen, M.; Contaldo, N.; Makarova, O.; Paltrinieri, S.; Bertaccini, A. Deep amplicon sequencing reveals mixed phytoplasma infection within single grapevine plants. Bull. Insectol. 2011, 64, S35–S36.
[87]  Snyman, M.C.; Solofoharivelo, M.C.; van der Walt, A.; Stephan, D.; Murray, S.; Burger, J.T. Deep sequencing analysis reveals modulated gene expression in response to aster yellow phytoplasma infection in Vitis vinifera cv. Chardonnay. In Proceedings of the 17th Congress of ICVG, Davis, CA, USA, 7–14 October 2012.
[88]  Palmano, S.; Saccardo, F.; Martini, M.; Ermacora, P.; Scortichini, M.; Abbà, S.; Marzachì, C.; Loi, N.; Firrao, G. Insights into phytoplasma biology through next generation sequencing. J. Plant Pathol. 2012, 94, 50–51.
[89]  Ehya, F.; Monavarfeshani, A.; Fard, E.M.; Farsad, L.K.; Nekouei, M.K.; Mardi, M.; Salekdeh, G.H. Phytoplama-responsive microRNAs modulate hormonal, nutrional, and stress signalling pathways in Mexican lime trees. PLoS One 2013, 8, e6372.
[90]  Zhao, H.; Sun, R.; Albrecht, U.; Padmanabhan, C.; Wang, A.; Coffey, M.D.; Girke, T.; Wang, Z.; Close, T.J.; Roose, M.; et al. Small RNA profiling reveals phosphorous deficiency as a contributin factor in symptom expression for Citrus Huanglongbing disease. Mol. Plant 2013, 6, 301–310, doi:10.1093/mp/sst002.
[91]  Paszkiewicz, K.; Studholme, D.J. De novo assembly of short sequence reads. Brief Bioinform. 2010, 11, 457–472, doi:10.1093/bib/bbq020.
[92]  Shendure, J.; Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 2008, 26, 1135–1145, doi:10.1038/nbt1486.
[93]  Zhang, W.; Chen, J.; Yang, Y.; Tang, Y.; Shang, J; Chen, B. A practical application of de novo genome assembly software tools for next-generation sequencing technologies. PLoS One 2011, 6, e17915.
[94]  Horner, D.S.; Pavesi, G.; Castrignano, T.; D’Onorio de Meo, P.; Liuni, S.; Sammeth, M; Picardi, E.; Pesole, G. Bioinformatics approaches for genomics and post genomics applications of next generation sequencing. Brief Bioinform. 2009, 11, 181–197.
[95]  Metzker, M.L. Sequencing technologies—The next generation. Nat. Rev. Genet. 2010, 11, 31–46, doi:10.1038/nrg2626.
[96]  Miller, J.R.; Koren, S.; Sutton, G. Assembly algorithms for next generation sequencing data. Genetics 2010, 95, 315–327.
[97]  Pabinger, S.; Dander, A.; Fischer, M.; Snajder, R.; Sperk, M.; Efremova, M.; Krabichler, B.; Speicher, M.R.; Zschocke, J.; Trajanoski, Z. A survey of tools for variant analysis of next-generation genome sequencing data. Brief Bioinform. 2013, doi:10.1093/bib/bbs086.
[98]  Bioinformatics for Biologists; Pevzner, P., Shamir, R., Eds.; Cambridge University Press: Cambridge, UK, 2011; p. 392.
[99]  Wetterstrand, K.A. DNA sequencing costs: Data from the NHGRI Genome Sequencing Program (GSP). Available online: http://www.genome.gov/sequencingcosts/ (accessed on 1 October 2013).
[100]  Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63, doi:10.1038/nrg2484.
[101]  Hoffmann, C.; Minkah, N.; Leipzig, J.; Wang, G.; Arens, M.Q.; Tebas, P.; Bushman, F.D. DNA bar coding and pyrosequencing to identify rare HIV drug resistance mutations. Nucleic Acids Res. 2007, 35, e91, doi:10.1093/nar/gkm435.
[102]  Wang, C.; Mitsuya, Y.; Gharizadeh, B.; Ronaghi, M.; Shafer, R.W. Characterization of mutation spectra with ultra-deep pyrosequencing: Application to HIV-1 drug resistance. Genome Res. 2007, 17, 1195–1201, doi:10.1101/gr.6468307.
[103]  Briese, T.; Paweska, J.T.; McMullan, L.K.; Hutchison, S.K.; Street, C.; Palacios, G.; Khristova, M.L.; Weyer, J.; Swanepoel, R.; Egholm, M.; et al. Genetic detection and characterization of Lujo virus, a new hemorrhagic fever-associated arenavirus from southern Africa. PLoS Pathog. 2009, 5, e1000455, doi:10.1371/journal.ppat.1000455.
[104]  Barzon, L.; Lavezzo, E.; Militello, V.; Toppo, S.; Palù, G. Applications of next-generation sequencing technologies to diagnostic virology. Int. J. Mol. Sci. 2011, 12, 7861–7884, doi:10.3390/ijms12117861.
[105]  Barba, M.; Hadidi, A. RNA silencing and viroids. J. Plant. Pathol. 2009, 91, 243–247.
[106]  Mlotshwa, S.; Pruss, G.J.; Vance, V. Small RNAs in viral infection and host Defense. Trends Plant Sci. 2008, 13, 375–382, doi:10.1016/j.tplants.2008.04.009.
[107]  Liu, S.; Vijayendran, D.; Bonning, B.C. Next generation sequencing technologies for insect virus discovery. Viruses 2011, 3, 1849–1869, doi:10.3390/v3101849.
[108]  Howell, W.E.; Thompson, D.; Scott, S. Virus-like disorders of fruit trees with undetermined etiology. In Virus and Virus-Like Diseases of Pome and Stone Fruits; Hadidi, A., Barba, M., Candresse, T., Jelkmann, W., Eds.; The American Phytopathological Society Press: St. Paul, MN, USA, 2011; pp. 259–265.
[109]  Martin, R.R. Personal communication. US Department of Agriculture, Agricultural Research Service: Corvallis, OR, USA, 2012.
[110]  Virus Taxonomy Ninth Report of the International Committee on Taxonomy of Viruses; King, A.M.Q., Adams, M.J., Carstens, E.B., Lefkowitz, E.J., Eds.; Elsevier Academic Press: San Diego, CA, USA, 2012; p. 1327.
[111]  Hadidi, A.; Barba, M. Next-generation sequencing: Historical perspective and current applications in plant virology. Petria 2012, 22, 262–277.
[112]  Bar-Joseph, M.; Gera, A. On a revolutionary method for diagnosis of latent infections of viruses and the importance of its adoption to prevent the spread of citrus and other fruit tree diseases (in Hebrew). Alon Hanotea 2012, 66, 46–48.
[113]  Martelli, G.P. Grapevine virology highlights. In Proceedings of the 17th Congress of ICVG, Davis, CA, USA, 7–14 October 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133