A major challenge related to caring for patients with chronic conditions is the early detection of exacerbations of the disease. Medical personnel should be contacted immediately in order to intervene in time before an acute state is reached, ensuring patient safety. This paper proposes an approach to an ambient intelligence (AmI) framework supporting real-time remote monitoring of patients diagnosed with congestive heart failure (CHF). Its novelty is the integration of: (i) personalized monitoring of the patients health status and risk stage; (ii) intelligent alerting of the dedicated physician through the construction of medical workflows on-the-fly; and (iii) dynamic adaptation of the vital signs’ monitoring environment on any available device or smart phone located in close proximity to the physician depending on new medical measurements, additional disease specifications or the failure of the infrastructure. The intelligence lies in the adoption of semantics providing for a personalized and automated emergency alerting that smoothly interacts with the physician, regardless of his location, ensuring timely intervention during an emergency. It is evaluated on a medical emergency scenario, where in the case of exceeded patient thresholds, medical personnel are localized and contacted, presenting ad hoc information on the patient’s condition on the most suited device within the physician’s reach.
References
[1]
Gao, T.; Greenspan, D.; Welsh, M.; Juang, R.; Alm, A. Vital Signs Monitoring and Patient Tracking over a Wireless Network. Proceedings of the 27th Annual International Conference of the Engineering in Medicine and Biology Society, Limerick, Ireland, 1–4 September 2005; pp. 102–105.
[2]
Kostomanolakis, S.; Kavlentakis, G.; Sakkalis, V.; Chronaki, C.; Tsiknakis, M.; Orphanoudakis, S. Seamless Integration of Healthcare Processes Related to Image Management and Communication in Primary Healthcare Centers. Proceedings of the 18th International Conference EuroPACS 2000, Graz, Austria, 21–23 September 2000; pp. 126–132.
[3]
White, L.; Terner, M. E-health, phase two: The imperative to integrate process automation with communication automation for large clinical reference laboratories. J. Healthc. Inf. Manag. 2001, 15, 295–305.
Kartakis, S.; Tourlakis, P.; Sakkalis, V.; Zacharioudakis, G.; Stephanidis, C. Enhancing the Patient Experience through Ambient Intelligence Applications in Health Vare. Proceedings of the 5th International Symposium on Ubiquitous Computing and Ambient Intelligence, Riviera Maya, Mexico, 6–9 December 2011.
[6]
Greenes, R. Clinical Decision Support: The Road Ahead; Academic Press: New York, NY, USA, 2007.
[7]
Mamlin, B.; Overhage, J.; Tierney, W.; Dexter, P.; McDonald, C. Clinical Decision Support within the Regenstrief Medical Record System. In Clinical Decision Support Systems: Theory and Practice; Academic Press: New York, NY, USA, 2007; pp. 190–214.
[8]
Teich, J.; Glaser, J.; Beckley, R.; Aranow, M.; Bates, D.; Kuperman, G.; Ward, M.; Spurr, C. The Brigham integrated computing system (BICS): Advanced clinical systems in an academic hospital environment. Int. J. Med. Inform. 1999, 54, 197–208.
[9]
Van Den Bossche, B.; van Hoecke, S.; Danneels, C.; Decruyenaere, J.; Dhoedt, B.; de Turck, F. Design of a JAIN SLEE/ESB-based platform for routing medical data in the ICU. Comput. Methods Programs Biomed. 2008, 91, 265–277.
[10]
Hristoskova, A.; Moeyersoon, D.; van Hoecke, S.; Verstichel, S.; Decruyenaere, J.; de Turck, F. Dynamic composition of medical support services in the ICU: Platform and algorithm design details. Comput. Methods Programs Biomed. 2010, 100, 248–264.
[11]
Lo, C.C.; Chen, C.H.; Cheng, D.Y.; Kung, H.Y. Ubiquitous healthcare service system with context-awareness capability: Design and implementation. Expert Syst. Appl. 2011, 38, 4416–4436.
[12]
Pung, H.K.; Gu, T.; Xue, W.; Palmes, P.P.; Zhu, J.; Ng, W.L.; Tang, C.W.; Chung, N.H. Context-aware middleware for pervasive elderly home care. IEEE J. Sel. Areas Commun. 2009, 27, 510–524.
[13]
García-Sánchez, P.; González, J.; Mora, A.M.; Prieto, A. Deploying intelligent e-health services in a mobile gateway. Expert Syst. Appl. 2012, 40, 1231–1239.
[14]
Philips Healthcare. Neonatal Event Review. Available online: http://www.healthcare.philips.com/main/products/patient_monitoring/pro-ducts/neonatal_event_review/ (accessed on 5 November 2013).
[15]
Philips Healthcare. Protocol Watch Project. Available online: http://www.healthcare.philips.com/main/products/patient_monitoring/pro-ducts/protocol_watch/ (accessed on 5 November 2013).
[16]
Philips Healthcare. On-Line Electronic Help. Available online: http://www.healthcare.philips.com/main/products/patient_monitoring/pro-ducts/oleh/ (accessed on 5 November 2013).
[17]
Philips Healthcare. IntelliVue Guardian Early Warning Score. Available online: http://www.healthcare.philips.com/main/products/patient_monitoring/pro-ducts/intellivue_guardian_ews/ (accessed on 5 November 2013).
[18]
Philips Healthcare. Event Surveillance. Available online: http://www.healthcare.philips.com/main/products/patient_monitoring/pro-ducts/event_surveillance/ (accessed on 5 November 2013).
[19]
Thestrup, J.; Gergely, T.; Beck, P. Exploring New Care Models in Diabetes Management and Therapy with a Wireless Mobile eHealth Platform. Proceedings of the 4th International ICST Conference on Wireless Mobile Communication and Healthcare, MobiHealth2011, Kos Island, Greece, 5–7 October 2011.
[20]
Rocha, A.; Martins, A.; Freire Junior, J.; Kamel Boulos, M.; Vicente, M.; Feld, R.; van de Ven, P.; Nelson, J.; Bourke, A.; óLaighin, G.; et al. Innovations in health care services: The CAALYX system. Int. J. Med. Inform. 2011, 82, 307–320.
[21]
Maniatopoulos, G.; McLoughlin, I.; Wilson, R.; Martin, M. Developing virtual healthcare systems in complex multi-agency service settings: The OLDES Project. Electron. J. e-Gov. 2009, 7, 163–170.
[22]
Eikerling, H.; Gr?fe, G.; R?hr, F.; Schneider, W. Ambient Heahltcare System: Using the Hydra Embedded Middleware for Implementing an Ambient Disease Management System. Proceedings of the Second International Conference on Health Informatics, Porto, Portugal, 14–17 January 2009; pp. 82–89.
[23]
Eisenhauer, M.; Rosengren, P.; Antolin, P. A Development Platform for Integrating Wireless Devices and Sensors into Ambient Intelligence Systems. Proceedings of the 6th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks Workshops, New Orleans, FL, USA, 22–26 June 2009; pp. 1–3.
[24]
Amoretti, M.; Copelli, S.; Wientapper, F.; Furfari, F.; Lenzi, S.; Chessa, S. Sensor data fusion for activity monitoring in the PERSONA ambient assisted living project. J. Ambient Intell. Humaniz. Comput. 2013, 4, 67–84.
[25]
Ram, R.; Furfari, F.; Girolami, M.; Iba?ez Sánchez, G.; Lázaro-Ramos, J.P.; Mayer, C.; Prazak-Aram, B.; Zentek, T. universAAL: Provisioning Platform for AAL Services. In Ambient Intelligence-Software and Applications; Springer: Berlin, Germay, 2013; pp. 105–112.
[26]
Herfet, T.; Kirste, T.; Schnaider, M. EMBASSI multimodal assistance for infotainment and service infrastructures. Comput. Graph. 2001, 25, 581–592.
[27]
Heider, T.; Kirste, T. Supporting goal-based interaction with dynamic intelligent environments. ECAI 2002. 10.1.1.72.1436.
[28]
Heider, T.; Kirste, T. Smart environments and self-organizing appliance ensembles. Mob. Comput. Ambient Intell. 2005, 5181, 01581.
[29]
Kannel, W.; D’Agostino, R.; Silbershatz, H.; Belanger, A.; Wilson, P.; Levy, D. Profile for estimating risk of heart failure. Arch. Intern. Med. 1999, 159, 1197–1204.
[30]
Candido, G.; Barata, J.; Colombo, A.; Jammes, F. SOA in reconfigurable supply chains: A research roadmap. Eng. Appl. Artif. Intell. 2009, 22, 939–949.
[31]
Hristoskova, A.; Volckaert, B.; de Turck, F. The WTE+ Framework: Automated construction and runtime adaptation of service mashups. Autom. Softw. Eng. 2012, 20, 1–44.
[32]
M?ller, T. OWLS API-OSIRIS Next. Available online: http://on.cs.unibas.ch/owls-api/ (accessed on 10 November 2013).
[33]
OWL-S, Semantic Markup for Web Services. Available online: http://www.w3.org/Submission/OWL-S/ (accessed on 10 November 2013).
[34]
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. Available online: http://www.w3.org/Submission/SWRL/ (accessed on 10 November 2013).
[35]
Pellet: OWL 2 Reasoner for Java. Available online: http://clarkparsia.com/pellet/ (accessed on 10 November 2013).
[36]
Vallée, M.; Ramparany, F.; Vercouter, L. Dynamic Service Composition in Ambient Intelligence Environments: A Multi-Agent Approach. Proceedings of the First European Young Researcher Workshop on Service-Oriented Computing, Leicester, UK, 21–22 April 2005; pp. 1–6.
Gamberger, D.; Prcela, M.; Jovi?, A.; ?muc, T.; Parati, G.; Valentini, M.; Kawecka-Jaszcz, K.; Styczkiewicz, K.; Kononowicz, A.; Candelieri, A.; et al. Medical knowledge representation within Heartfaid platform. Proceedings of the BIOSTEC International Joint Conference on Biomedical Engineering Systems and Technologies, Madeira, Portugal, 28–31 January 2008; pp. 307–314.
[39]
Chiou, Y.; Wang, C.; Yeh, S. An adaptive location estimator using tracking algorithms for indoor WLANs. Wirel. Netw. 2010, 16, 1987–2012.
[40]
iLab.t Virtual Wall. Available online: http://ilabt.ibbt.be/ (accessed on 10 November 2013).