Wireless Body Sensor Networks (WBSNs) constitute a subset of Wireless Sensor Networks (WSNs) responsible for monitoring vital sign-related data of patients and accordingly route this data towards a sink. In routing sensed data towards sinks, WBSNs face some of the same routing challenges as general WSNs, but the unique requirements of WBSNs impose some more constraints that need to be addressed by the routing mechanisms. This paper identifies various issues and challenges in pursuit of effective routing in WBSNs. Furthermore, it provides a detailed literature review of the various existing routing protocols used in the WBSN domain by discussing their strengths and weaknesses.
Pérez, J.J.; Alvaro, J.S.; Bustamante, J. A Wireless Body Sensor Network Platform to Measure Vital Signs in Clinical Monitoring. Proceedings of 2013 Pan American Health Care Exchanges (PAHCE), Medellin, Columbia, 29 April–4 May 2013; pp. 1–6.
[3]
Lee, Y.S.; Lee, H.J.; Alasaarela, E. Mutual Authentication in Wireless Body Sensor Networks (WBSN) Based on Physical Unclonable Function (PUF). Proceedingsof 9th International Wireless Communications and Mobile Computing Conference (IWCMC), Sardinia, Italy, 1–5 July 2013; pp. 1314–1318.
[4]
Wener-Allen, G.; Lorincz, K.; Ruiz, M.; Marcillo, O.; Johnson, J.; Lees, J.; Walsh, M. Deploying a wireless sensor network on an active volcano. IEEE Int. Comput. 2006, 2, 18–25.
[5]
Castillo-Effer, M.; Quintela, D.H.; Moreno, W.; Jordan, R.; Westhoff, W. Wireless Sensor Networks for Flash-Flood Alerting. Proceedings of the 5th IEEE International Caracas Conference on Devices, Circuits and Systems, Punta Cana, Dominican Republic, 3–5 November 2004; pp. 142–146.
[6]
Gao, T.; Greenspan, D.; Welsh, M.; Juang, R.; Alm, A. Vital Signs Monitoring and Patient Tracking Over a Wireless Network. Proceedings of IEEE-EMBS 27th Annual International Conference of the Engineering in Medicine and Biology Society, Shanghai, China, 17–18 January 2006; pp. 102–105.
[7]
Lorincz, K.; Malan, D.J.; Fulford-Jones, T.R.; Nawoj, A.; Clavel, A.; Shnayder, V.; Mainland, G.; Welsh, M.; Moulton, S. Sensor networks for emergency response: Challenges and opportunities. IEEE Pervasive Comput. 2004, 3, 16–23.
[8]
Umamaheswari, S.; Priya, R.M. An efficient healthcare monitoring system in vehicular Ad Hoc networks. Int. J. Comput. Appl. 2013, 78, 45–49.
[9]
Aminian, M.; Naji, H.R. A hospital healthcare monitoring system using wireless sensor networks. J. Health Med. Inform. 2013, 121, doi:10.4172/2157-7420.1000121.
[10]
Simon, G.; Maróti, M.; Lédeczi, á.; Balogh, G.; Kusy, B.; Nádas, A.; Pap, G.; Sallai, J.; Frampton, K. Sensor Network-Based Countersniper System. Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, Baltimore, MD, USA, 3–5November 2004; pp. 1–12.
[11]
Yick, J.; Mukherjee, B.; Ghosal, D. Analysis of a Prediction-Based Mobility Adaptive Tracking Algorithm. Proceedings of 2nd International Conference on Broadband Networks, Boston, MA, USA, 3–7 October 2005; pp. 753–760.
[12]
United Nations. World Population Prospects: The 2012 Revision. Available online: http://esa.un.org/wpp/ (accessed on 13 June 2013).
[13]
Kinsella, K.G.; Phillips, D.R. Global Aging: The Challenge of Success; Population Reference Bureau: Washington, DC, USA, 2005.
[14]
He, W.; Sengupta, M.; Velkoff, V.A.; DeBarros, K.A. 65+ in the United States.. Current Population Reports; US Department of Commerce, Economics and Statistics Administration, US Census Bureau: Washington, DC, USA, 2005.
[15]
Oey, C.H.W.; Moh, S. A Survey on temperature-aware routing protocols in wireless body sensor networks. Sensors 2013, 13, 9860–9877.
[16]
Chen, C.; Knoll, A.; Wichmann, H-E.; Horsch, A. A review of three-layer wireless body sensor network systems in healthcare for continuous monitoring. J. Mod. Internet Things 2013, 2, 24–34.
[17]
Milenkovi?, A.; Otto, C.; Jovanov, E. Wireless sensor networks for personal health monitoring: Issues and an implementation. Comput. Commun. 2006, 29, 2521–2533.
[18]
Movassaghi, S.; Abolhasan, M.; Lipman, J. A review of routing protocols in wireless body area networks. J. Netw. 2013, 8, 559–575.
[19]
Ullah, S.; Higgins, H.; Braem, B.; Latre, B.; Blondia, C.; Moerman, I.; Saleem, S.; Rahman, Z.; Kwak, K.S. A comprehensive survey of wireless body area networks. J. Med. Syst. 2012, 36, 1065–1094.
[20]
Maskooki, A.; Soh, C.B.; Gunawan, E.; Low, K.S. Opportunistic Routing for Body Area Networks. Proceedings of IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2011; pp. 237–241.
[21]
Quwaider, M.; Biswas, S. On-Body Packet Routing Algorithms for Body Sensor Networks. Proceedings of 1st International Conference on Networks and Communications, Chennai, India, 27–29 December 2009; pp. 171–177.
[22]
Quwaider, M.; Biswas, S. Probabilistic Routing in On-Body Sensor Networks with Postural Disconnections. Proceedings of the 7th ACM International Symposium on Mobility Management and Wireless Access, Tenerife, Canary Islands, Spain, 27–30 October 2009; pp. 149–158.
[23]
Quwaider, M.; Biswas, S. DTN routing in body sensor networks with dynamic postural partitioning. Ad Hoc Netw. 2010, 8, 824–841.
[24]
Kandris, D.; Tsioumas, P.; Tzes, A.; Nikolakopoulos, G.; Vergados, D.D. Power conservation through energy efficient routing in wireless sensor networks. Sensors 2009, 9, 7320–7342.
[25]
Djenouri, D.; Balasingham, I. New QoS and Geographical Routing in Wireless Biomedical Sensor Networks. Proceedings of 6th International Conference on Broadband Communications, Networks, and Systems, Madrid, Spain, 14–16 September 2009; pp. 1–8.
[26]
Razzaque, M.A.; Hong, C.S.; Lee, S. Data-centric multiobjective QoS-aware routing protocol for body sensor networks. Sensors 2011, 11, 917–937.
Tang, Q.; Tummala, N.; Gupta, S.K.; Schwiebert, L. TARA: Thermal-Aware Routing Algorithm for Implanted Sensor Networks. Proceedingsof 1st IEEE International Conference Distributed Computing in Sensor Systems, Marina del Rey, CA, USA, 30 June–1 July 2005; pp. 206–217.
[29]
Bag, A.; Bassiouni, M.A. Hotspot preventing routing algorithm for delay-sensitive applications of in vivo biomedical sensor networks. Inf. Fusion 2008, 9, 389–398.
[30]
Abhayawardhana, V.S.; Wassell, I.J.; Crosby, D.; Sellars, M.P.; Brown, M.G. Comparison of Empirical Propagation Path Loss Models for Fixed Wireless Access Systems. Proceedings of IEEE the 61st Vehicular Technology Conference, Stockholm, Sweden, 30 May–1 June 2005; pp. 73–77.
[31]
Sayrafian-Pour, K.; Yang, W.B.; Hagedorn, J.; Terrill, J.; Yazdandoost, K.Y. A Statistical Path Loss Model for Medical Implant Communication Channels. Proceedings of IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, Tokyo, Japan, 13–16 September 2009; pp. 2995–2999.
[32]
Liang, X.; Balasingham, I. A QoS-Aware Routing Service Framework for Biomedical Sensor Networks. Proceedings of 4th International Symposium on Wireless Communication Systems, Trondheim, Norway, 17–19 October 2007; pp. 342–345.
[33]
Liang, X.; Balasingham, I.; Byun, S.S. A Reinforcement Learning Based Routing Protocol with QoS Support for Biomedical Sensor Networks. Proceedings of 1st International Symposium on Applied Sciences on Biomedical and Communication Technologies, Aalborg, Denmark, 25–28 October 2008; pp. 1–5.
[34]
Coello, C.A. An updated survey of GA-based multiobjective optimization techniques. ACM Comput. Surv. 2000, 32, 109–143.
[35]
Chipara, O.; He, Z.; Xing, G.; Chen, Q.; Wang, X.; Lu, C.; Stankovic, J.; Abdelzaher, T. Real-Time Power-Aware Routing in Sensor Networks. Proceedings of 14th IEEE International Workshop on Quality of Service, New Haven, CT, USA, 19–21 June 2006; pp. 83–92.
[36]
Zykina, A.V. A lexicographic optimization algorithm. Autom. Remote Control 2004, 65, 363–368.
[37]
Khan, Z.; Aslam, N.; Sivakumar, S.; Phillips, W. Energy-aware peering routing protocol for indoor hospital body area network communication. Procedia Comput. Sci. 2012, 10, 188–196.
[38]
Khan, Z.; Sivakumar, S.; Phillips, W.; Robertson, B. QPRD: QoS-Aware Peering Routing Protocol for Delay Sensitive Data in Hospital Body Area Network Communication. Proceedings of 7th International IEEE Conference on Broadband, Wireless Computing, Communication and Applications (BWCCA), Victoria, BC, Canada, 12–14 November 2012; pp. 178–185.
[39]
Khan, Z.A.; Sivakumar, S.; Phillips, W.; Robertson, B. A QoS-aware routing protocol for reliability sensitive data in hospital body area networks. Procedia Comput. Sci. 2013, 19, 171–179.
[40]
Nazir, B.; Hasbullah, H. Energy efficient and QoS aware routing protocol for clustered wireless sensor network. Comput. Electri. Eng. 2013, 39, 2425–2441.
[41]
Sharma, S.; Agarwal, P.; Jena, S.K. Energy Aware Multipath Routing Protocol for Wireless Sensor Networks. In Computer Networks & Communications (NetCom); Springer: New York, NY, USA, 2013; pp. 753–760.
[42]
Su, S.; Yu, H.; Wu, Z. An efficient multi-objective evolutionary algorithm for energy-aware QoS routing in wireless sensor network. Int. J. Sens. Netw. 2013, 13, 208–218.
[43]
Ben-Othman, J.; Yahya, B. Energy efficient and QoS based routing protocol for wireless sensor networks. J. Parallel Distrib. Comput. 2010, 70, 849–857.
[44]
Kandris, D.; Tsagkaropoulos, M.; Politis, I.; Tzes, A.; Kotsopoulos, S. Energy efficient and perceived QoS aware video routing over wireless multimedia sensor networks. Ad Hoc Netw. 2011, 9, 591–607.
Srinivasan, P.; Kamalakkannan, P. REAQ-AODV: Route Stability and Energy Aware QoS Routing in Mobile Ad Hoc Networks. Proceedings of 4th International Conference on Advanced Computing (ICoAC), Chennai, India, 13–15 December 2012; pp. 1–5.
[48]
Arya, V. A Quality of Service Analysis of Energy Aware Routing Protocols in Mobile Ad Hoc Networks. Proceedings of 6th International Conference on Contemporary Computing (IC3), Noida, India, 8–10 August 2013; pp. 439–444.
[49]
Lu, X.; Chen, X.; Li, Y.; Jin, D.; Zeng, L.; Rashvand, H.F. ZebraBAN: A heterogeneous high-performance energy efficient wireless body sensor network. IET Wirel. Sens. Syst. 2013, 3, 247–254.
[50]
Gerasimov, I.; Simon, R. A Bandwidth-Reservation Mechanism for On-Demand Ad Hoc Path Finding. Proceedings of 35th Annual Simulation Symposium, San Diego, CA, USA, 14–18April 2002; pp. 27–34.
[51]
Felemban, E.; Lee, C.G.; Ekici, E. MMSPEED: Multipath Multi-SPEED protocol for QoS guarantee of reliability and timeliness in wireless sensor networks. IEEE Trans. Mobile Comput. 2006, 5, 738–754.
[52]
Razzaque, M.A.; Alam, M.M.; Mamun-Or-Rashid, M.; Hong, C.S. Multi-constrained QoS geographic routing for heterogeneous traffic in sensor networks. IEICE Trans. Commun. 2008, 91, 2589–2601.
[53]
Sullivan, D.M. Electromagnetic Simulation Using the FDTD Method, 1st ed. ed.; Wiley-Blackwell Press: Hoboken, NJ, USA, 2000.
[54]
Pennes, H.H. Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1948, 1, 93–122.
[55]
Bag, A.; Bassiouni, M.A. Energy Efficient Thermal Aware Routing Algorithms for Embedded Biomedical Sensor Networks. Proceedings of IEEE International Conference Mobile Ad Hoc and Sensor Systems (MASS), Vancouver, BC, Canada, 9–12 October 2006; pp. 604–609.
[56]
Takahashi, D.; Xiao, Y.; Hu, F. LTRT: Least Total-Route Temperature Routing for Embedded Biomedical Sensor Networks. Proceedings of IEEE Global Telecommunications Conference, Washington, DC, USA, 26–30 November 2007; pp. 641–645.
[57]
Tabandeh, M.; Jahed, M.; Ahourai, F.; Moradi, S. A Thermal-Aware Shortest Hop Routing Algorithm for in vivo Biomedical Sensor Networks. Proceedings of 6th International Conference on Information Technology, Las Vegas, NV, USA, 27–29 April 2009; pp. 1612–1613.
[58]
Bag, A.; Bassiouni, M.A. Routing Algorithm for Network of Homogeneous and ID-Less Biomedical Sensor Nodes (RAIN). Proceedings of IEEE Sensors Applications Symposium, Altanta, GA, USA, 12–14 February 2008; pp. 68–73.
[59]
Javaid, N.; Abbas, Z.; Fareed, M.S.; Khan, Z.A.; Alrajeh, N. M-ATTEMPT: A new energy-efficient routing protocol for wireless body area sensor networks. Procedia Comput. Sci. 2013, 19, 224–231.
[60]
Culpepper, B.J.; Dung, L.; Moh, M. Design and analysis of Hybrid Indirect Transmissions (HIT) for data gathering in wireless micro sensor networks. ACM SIGMOBILE Mobile Comput. Commun. Rev. 2004, 8, 61–83.
[61]
Watteyne, T.; Augé-Blum, I.; Dohler, M.; Barthel, D. Anybody: A Self-Organization Protocol for Body Area Networks. Proceedings of the ICST 2nd International Conference on Body Area Networks, Brussels, Belgium, 11–3 June 2007.
[62]
Heinzelman, W.B.; Chandrakasan, A.P.; Balakrishnan, H. An application-specific protocol architecture for wireless microsensor networks. IEEE Trans. Wirel. Commun. 2002, 1, 660–670.
[63]
Reddy, M.; Jagadeeswara, P.; Prakash, S.; Reddy, P.C. Homogeneous and Heterogeneous Energy Schemes for Hierarchical Cluster Based Routing Protocols in WSN: A Survey. Proceedings of the 3rd International Conference on Trends in Information, Telecommunication and Computing, Bangalore, India, 3–4 August 2013; pp. 591–595.
[64]
Lindsey, S.; Raghavendra, C.S. PEGASIS: Power-Efficient Gathering in Sensor Information Systems. Proceedings of IEEE Aerospace Conference Proceedings, Big Sky, Montana, 9–16 March 2002; pp. 1125–1130.
[65]
Otto, C.; Milenkovic, A.; Sanders, C.; Jovanov, E. System architecture of a wireless body area sensor network for ubiquitous health monitoring. J. Mobile Multimed. 2006, 1, 307–326.
[66]
Movassaghi, S.; Abolhasan, M.; Lipman, J. Energy Efficient Thermal and Power Aware (ETPA) Routing in Body Area Networks. Proceedings of IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), Sydney, NSW, Australia, 9–12 September 2012; pp. 1108–1113.
[67]
Liang, X.; Li, X.; Shen, Q.; Lu, R.; Lin, X.; Shen, X.; Zhuang, W. Exploiting Prediction to Enable Secure and Reliable Routing in Wireless Body Area Networks. Proceedings of the 31st Annual IEEE International Conference on Computer Communications, Orlando, FL, USA, 25–30 March 2012; pp. 388–396.
[68]
Hess, F. Efficient Identity Based Signature Schemes Based on Pairings. Proceedings of 9th Annual International Workshop Selected Areas in Cryptography, Newfoundland, Canada, Valencia, Spain, 15–16 August 2002; pp. 310–324.
[69]
Lindgren, A.; Doria, A.; Schelen, O. Probabilistic routing in intermittently connected networks. ACM SIGMOBILE Mobile Comput. Commun. Rev. 2004, 7, 239–254.
[70]
Braem, B.; Latre, B.; Moerman, I.; Blondia, C.; Reusens, E.; Joseph, W.; Martens, L.; Demeester, P. The Need for Cooperation and Relaying in Short-Range High Path Loss Sensor Networks. Proceedings of International Conference on Sensor Technologies and Applications, Valencia, Spain, 14–20 October 2007; pp. 566–571.
[71]
Braem, B.; Latre, B.; Moerman, I.; Blondia, C.; Demeester, P. The Wireless Autonomous Spanning Tree Protocol for Multihop Wireless Body Area Networks. Proceedings of 3rd Annual International IEEE Conference on Mobile and Ubiquitous Systems: Networking and Services, San Jose, CA, USA, 17–21 July 2006; pp. 1–8.
[72]
Latre, B.; Braem, B.; Moerman, I.; Blondia, C.; Reusens, E.; Joseph, W.; Demeester, P. A Low-Delay Protocol for Multihop Wireless Body Area Networks. Proceedings of 4th Annual International Conference Mobile and Ubiquitous Systems: Networking and Services, Philadelphia, PA, USA, 6–10 August 2007; pp. 1–8.
[73]
Ruzzelli, A.G.; Jurdak, R.; O'Hare, G.M.; Van Der Stok, P. Energy-Efficient Multi-Hop Medical Sensor Networking. Proceedings of the 1st ACM SIGMOBILE International Workshop on Systems and Networking Support for Healthcare and Assisted Living Environments, San Juan, Puerto Rico, 11–14 June, 2007; pp. 37–42.
[74]
Ruzzelli, A.G.; O'Hare, G.M.; O'Grady, M.J.; Tynan, R. MERLIN: A Synergetic Integration of MAC and Routing Protocol for Distributed Sensor Networks. Proceedings of 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks, Reston, VA, USA, 25–28 September 2006; pp. 266–275.
[75]
Bag, A.; Bassiouni, M.A. Biocomm–A cross-layer medium access control (MAC) and routing protocol co-design for biomedical sensor networks. Int. J. Parallel Emerg. Distrib. Syst. 2009, 24, 85–103.