The development of flexible polymer monofilament fiber strain sensors have many applications in both wearable computing (clothing, gloves, etc.) and robotics design (large deformation control). For example, a high-stretch monofilament sensor could be integrated into robotic arm design, easily stretching over joints or along curved surfaces. As a monofilament, the sensor can be woven into or integrated with textiles for position or physiological monitoring, computer interface control, etc. Commercially available conductive polymer monofilament sensors were tested alongside monofilaments produced from carbon black (CB) mixed with a thermo-plastic elastomer (TPE) and extruded in different diameters. It was found that signal strength, drift, and precision characteristics were better with a 0.3 mm diameter CB/TPE monofilament than thick (~2 mm diameter) based on the same material or commercial monofilaments based on natural rubber or silicone elastomer (SE) matrices.
References
[1]
De Rossi, D.; Della Santa, A.; Mazzoldi, A. Dressware: Wearable hardware. Mater. Sci. Eng. C 1999, 7, 31–35.
Verdejo, R.; Bernal, M.M.; Romasanta, L.J.; Lopez-Manchado, M.A. Graphene filled polymer nanocomposites. J. Mater. Chem. 2011, 21, 3301–3310.
[7]
Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D.N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296–301.
[8]
Favini, E.; Agnihotra, S.; Surwade, S.P.; Niezrecki, C.; Willis, D.; Chen, J.; Niemi, E.; Desabrais, K.; Charette, C.; Manohar, S.K. Sensing performance of electrically conductive fabrics and suspension lines for parachute systems. J. Intell. Mater. Syst. Struct. 2012, 23, 1969–1986.
[9]
Cochrane, C.; Koncar, V.; Lewandowski, M.; Dufour, C. Design and development of a flexible strain sensor for textile structures based on a conductive polymer composite. Sensors 2007, 7, 473–492.
[10]
Gibbs, P.; Asada, H.H. Wearable conductive fiber sensors for multi-axis human joint angle measurements. J. NeuroEng. Rehabil. 2005, 2, 7.
[11]
Mattmann, C.; Clemens, F.; Tr?ster, G. Sensor for measuring strain in textile. Sensors 2008, 8, 3719–3732.
[12]
HBM Hottinger Baldwin Messtechnik GmbH (HBM). Available online: http://www.hbm.com/ (accessed on 11 December 2013).
[13]
Ruge, A.C. Strain Responsive Apparatus. US Patent 2,322,319A, 13 April 1943.
[14]
York, A.; Dunn, J.; Seelecke, S. Systematic approach to development of pressure sensors using dielectric electro-active polymer membranes. Smart Mater. Struct. 2013, 22, 094015.
[15]
Mitch Berkson, D.F. Pressure Transducers Technical Note 1; Sensata Technologies: St. Attleboro, MA, USA, 2008.
Kujawski, M.; Pearse, J.D.; Smela, E. Elastomers filled with exfoliated graphite as compliant electrodes. Carbon 2010, 48, 2409–2417.
[18]
Cochrane, C.; Lewandowski, M.; Koncar, V. A flexible strain sensor based on a conductive polymer composite for in situ measurement of parachute canopy deformation. Sensors 2010, 10, 8291–8303.
O'Brien, B.M.; Justin, T.; Iain, A. Integrated extension sensor based on resistance and voltage measurement for a dielectric elastomer. Electroact. Polym. Actuators Devices 2007, doi:10.1117/12.715823.
Flandin, L.; Chang, A.; Nazarenko, S.; Hiltner, A.; Baer, E. Effect of strain on the properties of an ethylene–octene elastomer with conductive carbon fillers. J. Appl. Polym. Sci. 2000, 76, 894–905.
[25]
Aharoni, S.M. Electrical resistivity of a composite of conducting particles in an insulating matrix. J. Appl. Phys. 1972, 43, 2463–2465.
[26]
Liang, J.; Yang, Q. Aggregate structure and percolation behavior in polymer/carbon black conductive composites. J. Appl. Phys. 2007, 102, 083508:1–083508:6.
[27]
Clemens, F.J.; Koll, B.; Graule, T.; Watras, T.; Binkowski, M.; Mattmann, C.; Silveira, I. Development of piezoresistive fiber sensors, based on carbon black filled thermoplastic elastomer compounds, for textile application. Adv. Sci. Technol. 2013, 80, 7–13.
[28]
Mattmann, C.; Amft, O.; Harms, H.; Troster, G.; Clemens, F. Recognizing Upper Body Postures Using Textile Strain Sensors. Proceedings of the 11th IEEE International Symposium on Wearable Computers, Boston, MA, USA, 11–13 October 2007; pp. 29–36.
[29]
Tekscan: Tekscan Flexiforce Sensors User Manual. Available online: http://www.tekscan.com/pdf/FLX-FlexiForce-Sensors-Manual.pdf (accessed on 11 December 2013).
[30]
LLC, S. FSR 101—THE BASICS. Available online: http://www.sensitronics.com/fsr101.htm (accessed on 11 December 2013).
[31]
Interlink Electronics, I. Force Sensing Resistor Integration Guide and Evaluation Parts Catalog. Available online: http://resenv.media.mit.edu/classes/MAS836/Readings/fsrguide.pdf (accessed on 11 December 2013).
[32]
Glazzard, M.; Kettley, S. Knitted Stretch Sensors for Sound Output. Proceedings of the CHI 2009, Boston, MA, USA, 4–9 April 2009.
[33]
Abelton. Available online: https://www.ableton.com/ (accessed on 11 December 2013).
[34]
EA60 Silicone Elastomer is a Conductive, Platinum-Cured Polysiloxane. It Has Excellent Resistance to Ozone, Oxidation, Ultraviolet Light, Corona Discharge, Cosmic Radiation and Weathering in General, ed.; Melnykowycz, M., Ed.; Images Scientific Instruments Inc.: Staten Island, NY, USA, 2013.
[35]
Clemens, F.J.; Wallquist, V.; Buchser, W.; Wegmann, M.; Graule, T. Silicon carbide fiber-shaped microtools by extrusion and sintering SiC with and without carbon powder sintering additive. Ceram. Int. 2007, 33, 491–496.
Flandin, L.; Hiltner, A.; Baer, E. Interrelationships between electrical and mechanical properties of a carbon black-filled ethylene–octene elastomer. Polymer 2001, 42, 827–838.