全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2014 

Recommendations for Standardizing Validation Procedures Assessing Physical Activity of Older Persons by Monitoring Body Postures and Movements

DOI: 10.3390/s140101267

Keywords: activity monitoring, older persons, physical activity, validation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Physical activity is an important determinant of health and well-being in older persons and contributes to their social participation and quality of life. Hence, assessment tools are needed to study this physical activity in free-living conditions. Wearable motion sensing technology is used to assess physical activity. However, there is a lack of harmonisation of validation protocols and applied statistics, which make it hard to compare available and future studies. Therefore, the aim of this paper is to formulate recommendations for assessing the validity of sensor-based activity monitoring in older persons with focus on the measurement of body postures and movements. Validation studies of body-worn devices providing parameters on body postures and movements were identified and summarized and an extensive inter-active process between authors resulted in recommendations about: information on the assessed persons, the technical system, and the analysis of relevant parameters of physical activity, based on a standardized and semi-structured protocol. The recommended protocols can be regarded as a first attempt to standardize validity studies in the area of monitoring physical activity.

References

[1]  LaCroix, A.Z.; Guralnik, J.M.; Berkman, L.F.; Wallace, R.B.; Satterfield, S. Maintaining mobility in late life. II. Smoking, alcohol consumption, physical activity, and body mass index. Am. J. Epidemiol. 1993, 137, 858–869.
[2]  Manini, T.M.; Everhart, J.E.; Patel, K.V.; Schoeller, D.A.; Colbert, L.H.; Visser, M.; Tylavsky, F.; Bauer, D.C.; Goodpaster, B.H.; Harris, T.B. Daily activity energy expenditure and mortality among older adults. JAMA 2006, 296, 171–179.
[3]  Katzmarzyk, P.T.; Janssen, I. The economic costs associated with physical inactivity and obesity in Canada: An update. Can. J. Appl. Physiol. 2004, 29, 90–115.
[4]  Chodzko-Zajko, W.J.; Proctor, D.N.; Fiatarone Singh, M.A.; Minson, C.T.; Nigg, C.R.; Salem, G.J. American college of sports medicine position stand. Exercise and physical activity for older adults. Med. Sci. Sports Exerc. 2009, 41, 1510–1530.
[5]  World Health Organisation. International Classification of Functioning, Disability, and Health. Available online: http://www.who.int/classifications/icf/en/ (accessed on 5 January 2005).
[6]  Cavill, N.; Kahlmeier, S.; Racioppi, S. Physical Activity and Health in Europe: Evidence for Action; WHO Regional Office for Europe: Copenhagen, Denmark, 2006.
[7]  Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131.
[8]  Allet, L.; Knols, R.H.; Shirato, K.; de Bruin, E.D. Wearable systems for monitoring mobility-related activities in chronic disease: A systematic review. Sensors 2010, 10, 9026–9052.
[9]  De Bruin, E.D.; Hartmann, A.; Uebelhart, D.; Murer, K.; Zijlstra, W. Wearable systems for monitoring mobility-related activities in older people: A systematic review. Clin. Rehabil. 2008, 22, 878–895.
[10]  Pitta, F.; Troosters, T.; Probst, V.S.; Spruit, M.A.; Decramer, M.; Gosselink, R. Quantifying physical activity in daily life with questionnaires and motion sensors in COPD. Eur. Respir. J. 2006, 27, 1040–1055.
[11]  J?rstad-Stein, E.C.; Hauer, K.; Becker, C.; Bonnefoy, M.; Nakash, R.A.; Skelton, D.A.; Lamb, S.E. Suitability of physical activity questionnaires for older adults in fall prevention trials: A systematic review. JAPA 2005, 13, 461–481.
[12]  Myers, A.M.; Holliday, P.J.; Harvey, K.A.; Hutchinson, K.S. Functional performance measures: Are they superior to self-assessments? J. Gerontol. 1993, 48, M196–M206.
[13]  Zijlstra, W.; Aminian, K. Mobility assessment in older people: New possibilities and challenges. Eur. J. Ageing 2007, 4, 3–12.
[14]  Salarian, A.; Russmann, H.; Vingerhoets, F.J.G.; Burkhard, P.R.; Aminian, K. Ambulatory monitoring of physical activities in patients with parkinson's disease. IEEE Trans. Biomed. Eng. 2007, 54, 2296–2299.
[15]  Ganea, R.; Paraschiv-lonescu, A.; Aminian, K. Detection and classification of postural transitions in real-world conditions. IEEE Trans. Neural Syst. Rehabil. Eng. 2012, 20, 688–696.
[16]  Yang, C.C.; Hsu, Y.L. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 2010, 10, 7772–7788.
[17]  Grant, P.M.; Ryan, C.G.; Tigbe, W.W.; Granat, M.H. The validation of a novel activity monitor in the measurement of posture and motion during everyday activities. Br. J. Sports Med. 2006, 40, 992–997.
[18]  Aminian, K.; Robert, P.; Buchser, E.E.; Rutschmann, B.; Hayoz, D.; Depairon, M. Physical activity monitoring based on accelerometry: Validation and comparison with video observation. Med. Biol. Eng. Comput. 1999, 37, 304–308.
[19]  Bussmann, H.B.; Reuvekamp, P.J.; Veltink, P.H.; Martens, W.L.; Stam, H.J. Validity and reliability of measurements obtained with an “activity monitor” in people with and without a transtibial amputation. Phys. Ther. 1998, 78, 989–998.
[20]  Uiterwaal, M.; Glerum, E.B.; Busser, H.J.; van Lummel, R.C. Ambulatory monitoring of physical activity in working situations, a validation study. J. Med. Eng. Technol. 1998, 22, 168–172.
[21]  Taraldsen, K.; Askim, T.; Sletvold, O.; Einarsen, E.K.; Gruner, B.K.; Indredavik, B.; Helbostad, J.L. Evaluation of a body-worn sensor system to measure physical activity in older people with impaired function. Phys. Ther. 2011, 91, 277–285.
[22]  Dijkstra, B.; Kamsma, Y.P.; Zijlstra, W. Detection of gait and postures using a miniaturized triaxial accelerometer-based system: Accuracy in patients with mild to moderate Parkinson's disease. Arch. Phys. Med. Rehabil. 2010, 91, 1272–1277.
[23]  White, D.K.; Wagenaar, R.C.; Ellis, T. Monitoring activity in individuals with Parkinson disease: A validity study. J. Neurol. Phys. Ther. 2006, 30, 12–21.
[24]  Culhane, K.M.; Lyons, G.M.; Hilton, D.; Grace, P.A.; Lyons, D. Long-term mobility monitoring of older adults using accelerometers in a clinical environment. Clin. Rehabil. 2004, 18, 335–343.
[25]  Najafi, B.; Aminian, K.; Paraschiv-Ionescu, A.; Loew, F.; Bula, C.J.; Robert, P. Ambulatory system for human motion analysis using a kinematic sensor: Monitoring of daily physical activity in the elderly. IEEE Trans. Biomed. Eng. 2003, 50, 711–723.
[26]  Taraldsen, K.; Chastin, S.F.; Riphagen, I.I.; Vereijken, B.; Helbostad, J.L. Physical activity monitoring by use of accelerometer-based body-worn sensors in older adults: A systematic literature review of current knowledge and applications. Maturitas 2011, 71, 13–19.
[27]  Ryan, C.G.; Grant, P.M.; Tigbe, W.W.; Granat, M.H. The validity and reliability of a novel activity monitor as a measure of walking. Br. J. Sports Med. 2006, 40, 779–784.
[28]  Paraschiv-Ionescu, A.; Perruchoud, C.; Buchser, E.; Aminian, K. Barcoding human physical activity to assess chronic pain conditions. PLoS One 2012, doi:10.1371/journal.pone.0032239.
[29]  Zijlstra, A.; Zijlstra, W. Trunk-acceleration based assessment of gait parameters in older persons: A comparison of reliability and validity of four inverted pendulum based estimations. Gait Posture 2013, 38, 940–944.
[30]  Chastin, S.F.M.; Schwartz, U.; Skelton, D.A. Development of a consensus taxonomy of sedentary behaviors (SIT): Report of Delphi round 1. PLoS One 2013, doi:10.1371/journal.pone.0082313.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133