Adjustment of Measurements with Multiplicative Errors: Error Analysis, Estimates of the Variance of Unit Weight, and Effect on Volume Estimation from LiDAR-Type Digital Elevation Models
Modern observation technology has verified that measurement errors can be proportional to the true values of measurements such as GPS, VLBI baselines and LiDAR. Observational models of this type are called multiplicative error models. This paper is to extend the work of Xu and Shimada published in 2000 on multiplicative error models to analytical error analysis of quantities of practical interest and estimates of the variance of unit weight. We analytically derive the variance-covariance matrices of the three least squares (LS) adjustments, the adjusted measurements and the corrections of measurements in multiplicative error models. For quality evaluation, we construct five estimators for the variance of unit weight in association of the three LS adjustment methods. Although LiDAR measurements are contaminated with multiplicative random errors, LiDAR-based digital elevation models (DEM) have been constructed as if they were of additive random errors. We will simulate a model landslide, which is assumed to be surveyed with LiDAR, and investigate the effect of LiDAR-type multiplicative error measurements on DEM construction and its effect on the estimate of landslide mass volume from the constructed DEM.
References
[1]
Ewing, C.E.; Mitchell, M.M. Introduction to Geodesy; Elsevier: New York, NY, USA, 1970. Chapter 7.
[2]
Airy, G.B. On the Algebraical and Numerical Theory of Errors of Observations and the Combination of Observations; Macmillan: Cambridge, UK, 1861; pp. 92–103.
[3]
Helmert, F.R. Die Ausgleichungsrechnung nach der Methode der kleinsten Quadrate; Zweite Auflage Teubner: Leipzig, Germany, 1907; pp. 358–363.
[4]
Rao, C.R.; Kleffe, J. Estimation of Variance Components and Applications; North-Holland: Amsterdam, The Netherlands, 1988.
[5]
Koch, K.R. Parameter Estimation and Hypothesis Testing in Linear Models, 2nd ed. ed.; Springer: Berlin, Germany, 1999; pp. 225–237.
[6]
Xu, P.L. Iterative generalized cross-validation for fusing heteroscedastic data of inverse ill-posed problems. Geophys. J. Int. 2009, 179, 182–200.
[7]
Huber, P.J. Robust estimation of a location parameter. Ann. Math. Stat. 1964, 35, 73–101.
[8]
Rousseeuw, P.J.; Leroy, A.M. Robust Regression and Outlier Detection; Wiley: New York, NY, USA, 1987.
[9]
Barnett, V.; Lewis, T. Outliers in Statistical Data, 3rd ed. ed.; Wiley: Chichester, UK, 1994.
[10]
Baarda, W. A Testing Procedure for Use in Geodetic Networks; Netherlands Geodetic Commission: Delft, The Netherlands, 1968; Volume 2.
[11]
Xu, P.L. Sign-constrained robust least squares, subjective breakdown point and the effect of weights of observations on robustness. J. Geod. 2005, 79, 146–159.
Gui, Q.; Zhang, J. Robust biased estimation and its applications in geodetic adjustments. J. Geod. 1998, 72, 430–435.
[14]
Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45.
[15]
Curlander, J.C.; McDonough, R.N. Synthetic Aperture Radar; Wiley: New York, NY, USA, 1991.
[16]
Parkinson, B.W.; Spilker, J.J., Jr. Global Positioning System: Theory and Applications; American Institute Aeronautics Astronautics: Washington, DC, USA, 1996; Volume 1.
[17]
Hofmann-Wellenhof, B.; Lichtenegger, H.; Collins, J. GPS—Theory and Practice; Springer-Verlag: Berlin, Germany, 1992.
[18]
Xu, P.L. Voronoi cells, probabilistic bounds and hypothesis testing in mixed integer linear models. IEEE Trans. Inf. Theory 2006, 52, 3122–3138.
[19]
MacDoran, P.F. Satellite emission radio interferometric Earth surveying series—GPS geodetic system. Bull. Geod. 1979, 53, 117–138.
[20]
Seeber, G. Berlin, Germany. In Satellite Geodesy, 2nd ed. ed.; De Gruyter, 2003. Chapter 7.4.
[21]
Goodman, J.W. Some fundamental properties of speckle. J. Opt. Soc. Am. 1976, 66, 1145–1150.
[22]
Ulaby, F.; Kouyate, F.; Brisco, B.; Williams, T. Textural information in SAR images. IEEE Trans. Geosci. Remote Sens. 1986, 24, 235–245.
[23]
Oliver, C.J. Information from SAR images. J. Phys. D: Appl. Phys. 1991, 24, 1493–1514.
López-Martínez, C.; Pottier, E. On the extension of multidimensional speckle noise model from single-look to multilook SAR image. IEEE Trans. Geosci. Remote Sens. 2007, 45, 305–320.
[26]
López-Martínez, C.; Fabregas, X.; Pipia, L. Forest parameter estimation in the Pol-InSAR context employing the ultiplicative-additive speckle noise model. ISPRS J. Photogram. Remote Sens. 2011, 66, 597–607.
[27]
Wedderburn, R.W.M. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 1974, 61, 439–447.
[28]
McCullagh, P.; Nelder, J.A. Generalized Linear Models, 2nd ed. ed.; Chapman and Hall: London, UK, 1989.
[29]
Tjur, T. Nonlinear regression, quasi likelihood, and overdispersion in generalized linear models. Am. Stat. 1998, 52, 222–227.
[30]
Matthews, G.B. Theory and methods: A maximum likelihood estimation procedure for the generalized linear model with restrictions. S. Afr. Stat. J. 1998, 32, 119–144.
[31]
Paul, S.; Saha, K.K.T. The generalized linear model and extensions: A review and some biological and environmental applications. Environmetrics 2007, 18, 421–443.
[32]
Bj?rkall, S.; H?ssjer, O.; Ohlsson, E.; Verrall, R. A generalized linear model with smoothing effects for claims reserving. Insur. Math. Econ. 2011, 49, 27–37.
[33]
Xu, P.L.; Shimada, S. Least squares parameter estimation in multiplicative noise models. Commun. Stat. 2000, B29, 83–96.
[34]
Akima, H. Algorithm 760: Rectangular-grid-data surface fitting that has the accuracy of a bicubic polynomial. ACM Trans. Math. Softw. 1996, 22, 357–361.
[35]
Zimmerman, D.; Pavlik, C.; Ruggles, A.; Armstrong, M.P. An experimental comparison of ordinary and universal kriging and inverse distance weighting. Math. Geol. 1999, 31, 375–390.
[36]
Kidner, D.B. Higher-order interpolation of regular grid digital elevation models. Int. J. Remote Sens. 2003, 24, 2981–2987.
[37]
Kobler, A.; Pfeifer, N.; Ogrinc, P.; Todorovski, L.; Ostir, K.; Dzeroski, S. Repetitive interpolation: A robust algorithm for DTM generation from Aerial Laser Scanner Data in forested terrain. Remote Sens. Environ. 2007, 108, 9–23.
[38]
Chen, C.; Li, Y. A robust multiquadric method for digital elevation model construction. Math. Geosci. 2013, 45, 297–319.
[39]
Hu, H.; Fernandez-Steeger, T.M.; Dong, M.; Azzam, R. Numerical modeling of LiDAR-based geological model for landslide analysis. Autom. Constr. 2012, 24, 184–193.
[40]
Jaboyedoff, M.; Oppikofer, T.; Abellan, A.; Derron, M.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of LIDAR in landslide investigations: A review. Nat. Hazards 2012, 61, 5–28.
[41]
Stefanescu, E.R.; Bursik, M.; Cordoba, G.; Dalbey, K.; Jones, M.D.; Patra, A.K.; Pieri, D.C.; Pitman, E.B.; Sheridan, M.F. Digital elevation model uncertainty and hazard analysis using a geophysical flow model. Proc. R. Soc. A 2012, 468, 1543–1563.
[42]
Yang, Z.; Teller, J.T. Using LiDAR digital elevation model data to map Lake Agassiz beaches, measure their isostatically-induced gradients, and estimate their ages. Quat. Int. 2012, 260, 32–42.
[43]
Leigh, C.L.; Kidner, D.B.; Thomas, M.C. The use of LiDAR in digital surface modelling: Issues and errors. Trans. GIS 2009, 13, 345–361.
[44]
Liu, X. Airborne LiDAR for DEM generation: Some critical issues. Prog. Phys. Geogr. 2008, 32, 31–49.
[45]
Hladik, C.; Alber, M. Accuracy assessment and correction of a LIDAR-derived salt marsh digital elevation model. Remote Sens. Environ. 2012, 121, 224–235.
[46]
Xu, P.L.; Shi, Y.; Peng, J.H.; Liu, J.N.; Shi, C. Adjustment of geodetic measurements with mixed multiplicative and additive random errors. J. Geod. 2013, 87, 629–643.
[47]
Magnus, J.; Neudecker, H. Matrix Differential Calculus with Applications in Statistics and Econometrics; Wiley and Sons: New York, NY, USA, 1988. Chapter 8.
[48]
Xu, P.L. The effect of incorrect weights on estimating the variance of unit weight. Stud. Geophys. Geod. 2013, 57, 339–352.
[49]
Flamant, P.H.; Menzies, R.T.; Kavaya, M.J. Evidence for speckle effects on pulsed CO2 lidar signal returns from remote targets. Appl. Opt. 1984, 23, 1412–1417.
[50]
Wang, J.Y.; Pruitt, P.A. Effects of speckle on the range precision of a scanning lidar. Appl. Opt. 1992, 31, 801–808.
[51]
Hill, A.C.; Harris, M.; Ridley, K.C.; Jakeman, E.; Lutzmann, P. Lidar frequency modulation vibrometry in the presence of speckle. Appl. Opt. 2003, 42, 1091–1100.