Optical low-coherence interferometry (OLCI) takes advantage of the variation in refractive index in silicon-wire microring resonator (MRR) effective lengths to perform glucose biosensing using MRR interferograms. The MRR quality factor ( Q), proportional to the effective length, could be improved using the silicon-wire propagation loss and coupling ratio from the MRR coupler. Our study showed that multimode interference (MMI) performed well in broad band response, but the splitting ratio drifted to 75/25 due to the stress issue. The glucose sensing sensitivity demonstrated 0.00279 meter per refractive-index-unit (RIU) with a Q factor of ~30,000 under transverse electric polarization. The 1,310 nm DFB laser was built in the OLCI system as the optical ruler achieving 655 nm characterization accuracy. The lowest sensing limitation was therefore 2 × 10 ?4 RIU. Moreover, the MRR effective length from the glucose sensitivity could be utilized to experimentally demonstrate the silicon wire effective refractive index with a width of 0.45 mm and height of 0.26 mm.
References
[1]
Passaro, V.M.N.; Dell'Olio, F.; Casamassima, B.; de Leonardis, F. Guided-wave optical biosensors. Sensors 2007, 7, 508–536.
[2]
Fathpour, S.; Jalali, B. Silicon Photonics for Telecommunications and Biomedicine; CRC Press: Boca Raton, FL, USA, 2012. Chapter 6.
[3]
Blair, S.; Chen, Y. Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities. Appl. Opt. 2001, 40, 570–582.
[4]
De Vos, K.; Bartolozzi, I.; Schacht, E.; Bienstman, P.; Baets, R. Silicon-on-insulator microring resonaltor for sensitive and label-free biosensing. Opt. Express 2007, 15, 7610–7615.
[5]
Ksendzov, A.; Lin, Y. Integrated optics ring-resonator sensors for protein detection. Opt. Lett. 2005, 30, 3344–3346.
[6]
Ince, R.; Narayanaswamy, R. Analysis of the performance of interferometry, surface plasmon resolution and luminescence as biosensors and chemosensors. Anal. Chim. Acta 2006, 569, 1–20.
Wo, J.; Wang, G.; Gui, Y.; Sun, Q.; Liang, R.; Shum, P.P.; Liu, D. Refractive index sensor using microfiber-based Mach-Zehnder interferometer. Opt. Lett. 2012, 37, 67–69.
[9]
Pozzi, M.; Zonta, D.; Wu, H.; Inaudi, D. Development and laboratory validation of in-line multiplexed low-coherence interfermetric sensors. Opt. Fiber Technol. 2008, 14, 281–293.
[10]
Schmitt, K.; Schirmer, B.; Brandenburg, A. Development of a highly sensitive inteferometric biosensor. Proc. SPIE 2004, 5461, 22–29.
[11]
Larin, K.V.; Akkin, T.; Esenaliev, R.O.; Motamedi, M.; Milner, T.E. Phase-sensitive optical low-coherence reflectometry for the detection of analyte concentrations. Appl. Opt. 2004, 43, 3408–3414.
[12]
Xu, D.-X.; Densmore, A.; Waldron, P.; Lapointe, J.; Post, E.; Delage, A.; Janz, S.; Cheben, P.; Schmid, J.H.; Lamontagne, B. High bandwidth SOI photonic wire ring resonators using MMI couplers. Opt. Express 2007, 15, 3149–3155.
[13]
Soldano, L.; Pennings, E.C.M. Optical multi-mode interference devices based on self-imaging: Principles and applications. J. Light. Technol. 1995, 13, 615–627.
[14]
Fan, X.; White, I.M.; Shopova, S.I.; Zhu, H.; Suter, J.D.; Sun, Y. Sensitive optical biosensors for unlabeled targets: A review. Anal. Chim. Acta 2008, 620, 8–26.
[15]
Gorodetsky, M.L.; Savchenkov, A.A.; Ilchenko, V.S. Ultimate Q of optical microsphere resonators. Opt. Lett. 1996, 21, 453–455.
[16]
Lockwood, D.J.; Pavesi, L. Silicon Photonics II Components and Integration; Springer-Verlag: Berlin, Germany, 2011. Chapter 2.
[17]
Selvaraja, S.K.; Sleeckx, E.; Schaekers, M.; Bogaerts, W.; Thourhout, D.V.; Dumon, P.; Baets, R. Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry. Opt. Commun. 2009, 282, 1767–1770.
[18]
Dulkeith, E.; Xia, F.; Schares, L.; Green, W.M.J.; Vlasov, Y.A. Group index and group velocity dispersion in silicon-on-insulator photonic wires. Opt. Express 2006, 14, 3853–3863.
[19]
Su, H.; Huang, X.G. Fresnel-reflection-based fiber sensor for on-line measurement of solute concentration in solutions. Sens. Actuat. B 2007, 126, 579–582.