全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2014 

A Methodology to Assess the Accuracy with which Remote Data Characterize a Specific Surface, as a Function of Full Width at Half Maximum (FWHM): Application to Three Italian Coastal Waters

DOI: 10.3390/s140101155

Keywords: accuracy, characterization capability, FWHM, in situ hyperspectral reflectance, spectral similarity measurements, coastal water reflectance, CHRIS data, Landsat5-TM data, MIVIS data, PRISMA data

Full-Text   Cite this paper   Add to My Lib

Abstract:

This methodology assesses the accuracy with which remote data characterizes a surface, as a function of Full Width at Half Maximum (FWHM). The purpose is to identify the best remote data that improves the characterization of a surface, evaluating the number of bands in the spectral range. The first step creates an accurate dataset of remote simulated data, using in situ hyperspectral reflectances. The second step evaluates the capability of remote simulated data to characterize this surface. The spectral similarity measurements, which are obtained using classifiers, provide this capability. The third step examines the precision of this capability. The assumption is that in situ hyperspectral reflectances are considered the “real” reflectances. They are resized with the same spectral range of the remote data. The spectral similarity measurements which are obtained from “real” resized reflectances, are considered “real” measurements. Therefore, the quantity and magnitude of “errors” ( i.e., differences between spectral similarity measurements obtained from “real” resized reflectances and from remote data) provide the accuracy as a function of FWHM. This methodology was applied to evaluate the accuracy with which CHRIS-mode1, CHRIS-mode2, Landsat5-TM, MIVIS and PRISMA data characterize three coastal waters. Their mean values of uncertainty are 1.59%, 3.79%, 7.75%, 3.15% and 1.18%, respectively.

References

[1]  Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective; Prentice-Hall: Upper Saddle River, NJ, USA, 1996.
[2]  Goetz, A.F.H.; Vane, G.; Solomon, J.E.; Rock, B.N. Imaging spectrometry for earth remote sensing. Science 1985, 228, 1147–1153.
[3]  Goetz, A.F.H. Three decades of hyperspectral remote sensing of the Earth: A personal view. Remote Sens. Environ. 2009, 113, 5–16.
[4]  Rencz, A.N. Remote Sensing for the Earth Sciences-Manual of Remote Sensing, 3rd ed.; Rencz, A.N., Ed.; John Wiley and Sons: New York, NY, USA, 1999; Volume 3.
[5]  Agapiou, A.; Hadjimitsis, D.G.; Sarris, A.; Georgopoulos, A.; Alexakis, D.D. Optimum temporal and spectral window for monitoring crop marks over archaeological remains in the Mediterranean region. J. Archaeol. Sci. 2013, 40, 1479–1492.
[6]  Amici, S.; Piscini, A.; Buongiorno, M.F.; Pieri, D. Geological classifier of Volcano Teide by hyperspectral and multispectral satellite data. Int. J. Remote Sens. 2013, 34, 3356–3375.
[7]  Farifteh, J.; Nieuwenhuis, W.; Garcia-Melendez, E. Mapping spatial variations of iron oxide by-product mineral from EO-1 Hyperion. Int. J. Remote Sens. 2013, 34, 682–699.
[8]  Lu, Y.; Tian, Q.; Wang, X.; Zheng, G.; Li, X. Determining oil slick thickness using hyperspectral remote sensing in the Bohai Sea of China. Int. J. Digit. Earth 2013, 6, 76–93.
[9]  Pu, R.; Bell, S.; Meyer, C.; Baggett, L.; Zhao, Y. Mapping and assessing seagrass along the western coast of Florida using Landsat TM and EO-1 ALI/Hyperion imagery. Estuar. Coast. Shelf Sci. 2012, 115, 234–245.
[10]  Reinart, A.; Kutser, T. Comparison of different satellite sensors in detecting cyanobacterial bloom events in the Baltic Sea. Remote Sens. Environ. 2006, 102, 74–85.
[11]  Rudorff, C.M.; Galv?o, L.S.; Novo, E.M.L.M. Reflectance of floodplain waterbodies using EO-1 Hyperion data from high and receding flood periods of the Amazon River. Int. J. Remote Sens. 2009, 30, 2713–2720.
[12]  Lee, Z.; Casey, B.; Arnone, R.; Weidemann, A.; Parsons, R.; Montes, M.J.; Gao, B.C.; Goode, W.; Davis, C.O.; Dye, J. Water and bottom properties of a coastal environment derived from Hyperion data measured from the EO-1 spacecraft platform. J. Appl. Remote Sens. 2007, 1, 011502.
[13]  Liu, Z.; Zhou, Y. Direct inversion of shallow-water bathymetry from EO-1 hyperspectral remote sensing data. Chin. Opt. Lett. 2011, 9, 060102.
[14]  Negi, H.S.; Jassar, H.S.; Saravana, G.; Thakur, N.K.; Snehmani Ganju, A. Snow-Cover characteristics using Hyperion data for the Himalayan region. Int. J. Remote Sens. 2013, 34, 2140–2161.
[15]  Kim, S.H.; Hong, C.H. Antarctic land-cover classifier using IKONOS and Hyperion data at Terra Nova Bay. Int. J. Remote Sens. 2012, 33, 7151–7164.
[16]  Cavalli, R.M.; Fusilli, L.; Pascucci, S.; Pignatti, S.; Santini, F. Hyperspectral sensor data capability for retrieving complex urban land cover in comparison with multispectral data: Venice city case study (Italy). Sensors 2008, 8, 3299–3320.
[17]  Im, J.; Lu, Z.; Rhee, J.; Jensen, J.R. Fusion of feature selection and optimized immune networks for hyperspectral image classifier of urban landscapes. Geocarto Int. 2012, 27, 373–393.
[18]  Tiwari, P.S.; Pande, H.; Aye, M.N. Exploiting IKONOS and Hyperion data fusion for automated road extraction. Geocarto Int. 2010, 25, 123–131.
[19]  Goenaga, M.A.; Torres-Madronero, M.C.; Velez-Reyes, M.; van Bloem, S.J.; Chinea, J.D. Unmixing analysis of a time series of Hyperion images over the guánica dry forest in Puerto Rico. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2012, 6, 329–338.
[20]  Kumar, T.; Panigrahy, S.; Kumar, P.; Parihar, J.S. Classifier of floristic composition of mangrove forests using hyperspectral data: Case study of Bhitarkanika National Park, India. J. Coast. Conserv. 2013, 17, 121–132.
[21]  Spinetti, C.; Buongiorno, M.F.; Silvestri, M.; Zoffoli, S. Mt. Etna Volcanic Plume from Aster and Hyperion Data by ASI-SRV Modules. Proceedings of 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, Canada, 24–29 July 2011; pp. 4018–4021.
[22]  Xing, Q.; Lou, M.; Chen, C.; Shi, P. Using in situ and satellite hyperspectral data to estimate the surface suspended sediments concentrations in the Pearl River estuary. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2013, 6, 731–738.
[23]  Santini, F.; Alberotanza, L.; Cavalli, R.M.; Pignatti, S. A two-step optimization procedure for assessing water constituent concentrations by hyperspectral remote sensing techniques: An application to the highly turbid Venice lagoon waters. Remote Sens. Environ. 2010, 114, 887–898.
[24]  Zhao, S.; Jiang, T.; Wang, Z. Snow grain-size estimation using Hyperion imagery in a typical area of the Heihe River Basin, China. Remote Sens. 2013, 5, 238–253.
[25]  Ungar, S.G.; Pearlman, J.S.; Mendenhall, L.; Reuter, D. Overview of the Earth Observing 1 (EO1) mission. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1149–1159.
[26]  Barnsley, M.J.; Settle, J.J.; Cutter, M.A.; Lobb, D.R.; Teston, F. The PROBA/CHRIS mission: A low-cost smallsat for hyperspectral, multi-angle, observations of the earth surface and atmosphere. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1512–1520.
[27]  Kaufmann, H.; Segl, K.; Guanter, L.; Hofer, S.; Foerster, K.-P.; Stuffler, T.; Mueller, A.; Richter, R.; Bach, H.; Hostert, P.; et al. Environmental Mapping and Analysis Program (EnMAP)—Recent Advances and Status. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Boston, MA, USA, 7–11 July 2008; pp. IV-109–IV-112.
[28]  Hamada, K.; Kanda, S.; Hiramatsu, M.; Ishida, J. Optical sensor technology supporting the greeenhouse gases observing satellite (GoSAT, or IBUKI). NEC Tech. J. 2011, 6, 105–110.
[29]  Galeazzi, C.; Sacchetti, A.; Cisbani, A.; Babini, G. The PRISMA Program. , IV-105–IV-108.
[30]  Galeazzi, C.; Ananasso, C.; Loizzo, R. The PRISMA Program. Proceedings of the 6th European Association of Remote Sensing Laboratories Workshop (EARSeL), Tel Aviv, Israel, 16–19 March 2009.
[31]  Trishchenko, P.A. Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors: Extension to AVHRR NOAA-17, 18 and METOP-A. Remote Sens. Environ. 2009, 113, 335–341.
[32]  Trishchenko, P.A.; Cihlar, J.; Zhanqing, L. Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors. Remote Sens. Environ. 2002, 81, 1–18.
[33]  Agapiou, A.; Alexakis, D.D.; Hadjimitsis, D.G. Spectral sensitivity of ALOS, ASTER, IKONOS, LANDSAT and SPOT satellite imagery intended for the detection of archaeological crop marks. Int. J. Digit. Earth 2012, doi:10.1080/17538947.2012.674159.
[34]  Bassani, C.; Cavalli, R.M.; Madonna, F.; Palombo, A.; Pignatti, S. Laboratory activity for a new procedure of MIVIS calibration and relative validation with test data. Ann. Geophys. 2006, 49, 45–56.
[35]  Hadjimitsis, D.G.; Papadavid, G.; Agapiou, A.; Themistocleous, K.; Hadjimitsis, G.M.; Retalis, A.; Michaelides, S.; Chrysoulakis, N.; Toulios, L.; Clayton, C.R.I. Atmospheric correction for satellite remotely sensed data intended for agricultural applications: Impact on vegetation indices. Nat. Hazards Earth Syst. Sci. 2010, 10, 89–95.
[36]  Gutman, G. On the use of long-term global data of land reflectances and vegetation indices derived from the advanced very high resolution radiometer. J. Geophys. Res. 1999, 104, 6241–6255.
[37]  Avanzi, G.; Bianchi, R.; Cavalli, R.M.; Fiumi, L.; Marino, C.M.; Pignatti, S. Use of MIVIS Navigational Data for Precise Aircraft Positioning and Attitude Estimation. Proceedings of the SPIE-The International Society for Optical Engineering, Taormina, Italy, 23–26 September 1996; Volume 2960, pp. 184–192.
[38]  Cavalli, R.M.; Pignatti, S.; Zappitelli, E. Correction of sun glint effect on MIVIS data of the Sicily campaign in July 2000. Ann. Geophys 2006, 49, 277–286.
[39]  Brando, V.E.; Dekker, A.G. Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1378–1387.
[40]  Cavalli, R.M.; Laneve, G.; Fusilli, L.; Pignatti, S.; Santini, F. Remote sensing water observation for supporting Lake Victoria weed management. J. Environ. Manag. 2009, 90, 2199–2211.
[41]  Hochberg, E.J.; Atkinson, M.J. Capabilities of remote sensors to classify coral, algae, and sand as pure and mixed spectra. Remote Sens. Environ. 2003, 85, 174–189.
[42]  Van der Meer, F. The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery. Int. J. Appl. Earth Observ. Geoinf. 2006, 8, 3–17.
[43]  Bassani, C.; Cavalli, R.M.; Pignatti, S. Aerosol optical retrieval and surface reflectance from airborne remote sensing data over land. Sensors 2010, 10, 6421–6438.
[44]  Guanter, L.; Alonso, L.; Moreno, J. A method for the surface reflectance retrieval from PROBA/CHRIS data over land: Application to ESA SPARC campaigns. IEEE Trans. Geosc. Remote Sens. 2005, 43, 2908–2917.
[45]  Mueller, J.L.; Austin, R.W.; Morel, A.; Fargion, G.S.; McClain, C.R. Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4, Volume I: Introduction, Background and Conventions. NASA Tech. Memo 2003–21621; NASA Goddard Space Flight Center: Greenbelt, MD, USA; pp. 1–56.
[46]  Mueller, J.L.; Bidigare, R.R.; Trees, C.; Balch, W.M.; Dore, J.; Drapeau, D.T.; Karl, D.; van Heukelem, L.; Perl, J. Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 5, Volume V: Biogeochemical and Bio-Optical Measurements and Data Analysis Protocols. NASA/TM-2003; NASA Goddard Space Flight Center: Greenbelt, MD, USA; pp. 1–36.
[47]  Scott Pegau, J.; Ronald, V.; Zaneveld, B.; Mitchell, G.; Mueller, J.L.; Kahru, M.; Wieland, J.; Stramska, M. Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4, Volume IV: Inherent Optical Properties: Instruments, Characterizations, Field Measurements and Data Analysis Protocols. NASA /TM-2003 211621; NASA Goddard Space Flight Center: Greenbelt, MD, USA; pp. 1–76.
[48]  Morel, A.; Prieur, L. Analysis of variations in ocean color. Limnol. Oceanogr. 1977, 22, 709–722.
[49]  Mueller, J.L.; Morel, A.; Frouin, R.; Davis, C.; Arnone, R.; Carder, K.; Lee, Z.P.; Steward, R.G.; Hooker, S.; Mobley, C.D.; et al. Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4, Volume III: Radiometric Measurements and Data Analysis Protocols. NASA Tech. Memo.2003–21621; NASA Goddard Space Flight Center: Greenbelt, MD, USA; pp. 1–84.
[50]  Mobley, C.D. Estimation of the remote-sensing reflectance from above-surface measurements. Appl. Opt. 1999, 38, 7442–7455.
[51]  Fougnie, B.; Frouin, R.; Lecomte, P.; Deschamps, P.Y. Reduction of skylight reflection effects in the above-water measurement of diffuse marine reflectance. Appl. Opt. 1999, 38, 3844–3856.
[52]  Zibordi, G.; Hooker, S.B.; Berthon, J.F.; D'Alimonte, D. Autonomous above-water radiance measurements from an offshore platform: A field assessment experiment. J. Atmos. Ocean. Technol. 2001, 19, 808–819.
[53]  Cutter, M. CHRIS Data Format. Available online http://earth.esa.int/pub/ESA_DOC/proba_chris_data_format_issue4_1.pdf (accessed on 1 January 2005).
[54]  Bianchi, R.; Cavalli, R.M.; Fiumi, L.; Marino, C.M.; Pignatti, S.; Pizzaferri, G. 1994–1995 CNR LARA Project Airborne Hyperspectral Campaigns. Proceedings of the Eleventh Thematic Conference on Geologic Remote Sensing, Las Vegas, NV, USA, 27–29 February 1996; Volume II, pp. 301–310.
[55]  ENVI-Environment for Visualizing Images, Version 4.5; ITT Visual Information Solutions: Boulder, CO, USA, 2008.
[56]  Cavalli, R.M. Integrated Approach for Archaeological Prospection Exploiting Airborne Hyperspectral Remote Sensing. In Good Practice in Archaeological Diagnostics; Springer International Publishing: Cham, Switzerland, 2013; pp. 87–112.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133